Development of a Prediction Model for Tractor Axle Torque during Tillage Operation

耕作 计算机科学
作者
Wan-Soo Kim,Yong-Joo Kim,Seung-Yun Baek,Seungmin Baek,Yeon-Soo Kim,Seong-Un Park
出处
期刊:Applied Sciences 卷期号:10 (12): 4195- 被引量:5
标识
DOI:10.3390/app10124195
摘要

In general, the tractor axle torque is used as an indicator for making various decisions when engineers perform transmission fatigue life analysis, optimal design, and accelerated life testing. Since the existing axle torque measurement method requires an expensive torque sensor, an alternative method is required. Therefore, the aim of this study is to develop a prediction model for the tractor axle torque during tillage operation that can replace expensive axle torque sensors. A prediction model was proposed through regression analysis using key variables affecting the tractor axle torque. The engine torque, engine speed, tillage depth, slip ratio, and travel speed were selected as explanatory variables. In order to collect explanatory and dependent variable data, a load measurement system was developed, and a field experiment was performed on moldboard plow tillage using a tractor with a load measurement system. A total of eight axle torque prediction regression models were proposed using the measured calibration dataset. The adjusted coefficient of determination (R2) of the proposed regression model showed a range of 0.271 to 0.925. Among them, the prediction model E showed an adjusted R2 of 0.925. All of the prediction models were verified using a validation set. All of the axle torque prediction models showed an mean absolute percentage error (MAPE) of less than 2.8%. In particular, Model E, adopting engine torque, engine speed, and travel speed as variables, and Model H, adopting engine torque, tillage depth and travel speed as variables, showed MAPEs of 1.19 and 1.30%, respectively. Therefore, it was found that the proposed prediction models are applicable to actual axle torque prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助TT采纳,获得10
刚刚
清脆代桃完成签到 ,获得积分10
刚刚
科研通AI5应助ghh采纳,获得10
刚刚
叫滚滚发布了新的文献求助10
刚刚
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
2秒前
yeyong11完成签到,获得积分10
5秒前
CodeCraft应助柔弱的鱼采纳,获得30
6秒前
黄可以完成签到,获得积分10
6秒前
美少叔叔完成签到 ,获得积分10
7秒前
心灵美的修洁完成签到 ,获得积分10
8秒前
lzd完成签到,获得积分10
10秒前
11秒前
诸笑白发布了新的文献求助10
13秒前
13秒前
研友_LOK59L完成签到,获得积分10
15秒前
七子完成签到 ,获得积分10
16秒前
郑盼秋完成签到,获得积分10
16秒前
youjiang发布了新的文献求助10
17秒前
19秒前
孤独收割人完成签到,获得积分10
19秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
21秒前
Upupcc发布了新的文献求助10
23秒前
23秒前
勤劳落雁发布了新的文献求助10
24秒前
24秒前
24秒前
25秒前
25秒前
25秒前
周周发布了新的文献求助10
25秒前
26秒前
科研通AI5应助解青文采纳,获得10
26秒前
科研通AI5应助魏伯安采纳,获得30
26秒前
nekoneko完成签到,获得积分10
29秒前
29秒前
30秒前
帅关发布了新的文献求助10
30秒前
yyyyy语言发布了新的文献求助10
31秒前
asheng98完成签到 ,获得积分10
32秒前
Chen完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849