Development of a Prediction Model for Tractor Axle Torque during Tillage Operation

耕作 计算机科学
作者
Wan-Soo Kim,Yong-Joo Kim,Seung-Yun Baek,Seungmin Baek,Yeon-Soo Kim,Seong-Un Park
出处
期刊:Applied Sciences 卷期号:10 (12): 4195- 被引量:5
标识
DOI:10.3390/app10124195
摘要

In general, the tractor axle torque is used as an indicator for making various decisions when engineers perform transmission fatigue life analysis, optimal design, and accelerated life testing. Since the existing axle torque measurement method requires an expensive torque sensor, an alternative method is required. Therefore, the aim of this study is to develop a prediction model for the tractor axle torque during tillage operation that can replace expensive axle torque sensors. A prediction model was proposed through regression analysis using key variables affecting the tractor axle torque. The engine torque, engine speed, tillage depth, slip ratio, and travel speed were selected as explanatory variables. In order to collect explanatory and dependent variable data, a load measurement system was developed, and a field experiment was performed on moldboard plow tillage using a tractor with a load measurement system. A total of eight axle torque prediction regression models were proposed using the measured calibration dataset. The adjusted coefficient of determination (R2) of the proposed regression model showed a range of 0.271 to 0.925. Among them, the prediction model E showed an adjusted R2 of 0.925. All of the prediction models were verified using a validation set. All of the axle torque prediction models showed an mean absolute percentage error (MAPE) of less than 2.8%. In particular, Model E, adopting engine torque, engine speed, and travel speed as variables, and Model H, adopting engine torque, tillage depth and travel speed as variables, showed MAPEs of 1.19 and 1.30%, respectively. Therefore, it was found that the proposed prediction models are applicable to actual axle torque prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
简单雁枫完成签到,获得积分10
1秒前
1秒前
包笑白发布了新的文献求助10
2秒前
2秒前
jason完成签到,获得积分10
2秒前
3秒前
斯文败类应助清凉茶采纳,获得10
3秒前
3秒前
科研通AI2S应助ZYN采纳,获得10
3秒前
舒适灵完成签到,获得积分10
4秒前
5秒前
简单雁枫发布了新的文献求助30
6秒前
NexusExplorer应助友好石头采纳,获得10
6秒前
小欧完成签到 ,获得积分10
8秒前
包笑白完成签到,获得积分10
8秒前
shencheng完成签到,获得积分10
8秒前
大个应助毕业比耶采纳,获得10
8秒前
8秒前
Shiku完成签到,获得积分10
8秒前
pupu完成签到,获得积分10
10秒前
14秒前
汉堡包应助yurong采纳,获得10
15秒前
英俊的铭应助Joel采纳,获得10
18秒前
adoretheall发布了新的文献求助10
18秒前
19秒前
20秒前
舒适灵发布了新的文献求助10
20秒前
久醉绕心旋完成签到 ,获得积分10
20秒前
李木头完成签到,获得积分10
21秒前
22秒前
23秒前
hucchongzi应助肯瑞恩哭哭采纳,获得20
26秒前
Flicker完成签到 ,获得积分10
26秒前
一文字豪树完成签到,获得积分10
26秒前
深情安青应助一年八篇sci采纳,获得10
27秒前
清凉茶发布了新的文献求助10
27秒前
张宝发布了新的文献求助10
28秒前
28秒前
yuki完成签到,获得积分20
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112