Reconstruction of 3D Microstructures from 2D Images via Transfer Learning

人工智能 计算机科学 特征(语言学) 卷积神经网络 模式识别(心理学) 学习迁移 深度学习 计算机视觉 哲学 语言学
作者
Ramin Bostanabad
出处
期刊:Computer Aided Design [Elsevier BV]
卷期号:128: 102906-102906 被引量:73
标识
DOI:10.1016/j.cad.2020.102906
摘要

Computational analysis, modeling, and prediction of many phenomena in materials require a three-dimensional (3D) microstructure sample that embodies the salient features of the material system under study. Since acquiring 3D microstructural images is expensive and time-consuming, an alternative approach is to extrapolate a 2D image (aka exemplar) into a virtual 3D sample and thereafter use the 3D image in the analyses and design. In this paper, we introduce an efficient and novel approach based on transfer learning to accomplish this extrapolation-based reconstruction for a wide range of microstructures including alloys, porous media, and polycrystalline. We cast the reconstruction task as an optimization problem where a random 3D image is iteratively refined to match its microstructural features to those of the exemplar. VGG19, a pre-trained deep convolutional neural network, constitutes the backbone of this optimization where it is used to obtain the microstructural features and construct the objective function. By augmenting the architecture of VGG19 with a permutation operator, we enable it to take 3D images as inputs and generate a collection of 2D features that approximate an underlying 3D feature map. We demonstrate the applications of our approach with nine examples on various microstructure samples and image types (grayscale, binary, and RGB). As measured by independent statistical metrics, our approach ensures the statistical equivalency between the 3D reconstructed samples and the corresponding 2D exemplar quite well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
迟迟发布了新的文献求助10
刚刚
苗条的凝雁完成签到,获得积分10
刚刚
Ran发布了新的文献求助10
刚刚
刚刚
刚刚
辰岚发布了新的文献求助10
1秒前
yufeng完成签到 ,获得积分10
1秒前
1秒前
爪子完成签到,获得积分10
2秒前
怪叔叔发布了新的文献求助10
2秒前
脑洞疼应助JHL采纳,获得10
2秒前
星沉静默完成签到,获得积分10
3秒前
lyx完成签到,获得积分10
3秒前
科研狗完成签到,获得积分10
3秒前
务实豁完成签到,获得积分10
3秒前
酷波er应助朝天采纳,获得10
4秒前
4秒前
时尚的初柔完成签到,获得积分10
4秒前
Lawrence完成签到,获得积分10
4秒前
spy发布了新的文献求助10
5秒前
5秒前
lhh完成签到,获得积分10
5秒前
FashionBoy应助友好驳采纳,获得10
6秒前
joy完成签到,获得积分0
7秒前
星沉静默发布了新的文献求助10
7秒前
yuan1226完成签到 ,获得积分10
7秒前
欢欢发布了新的文献求助10
7秒前
7秒前
CR7应助香蕉擎采纳,获得20
7秒前
7秒前
xiaonanzi1完成签到,获得积分10
8秒前
8秒前
嗜血啊阳完成签到,获得积分10
8秒前
无语完成签到 ,获得积分10
8秒前
Ling完成签到,获得积分10
8秒前
Ann发布了新的文献求助10
9秒前
挡住所有坏运气888完成签到,获得积分10
10秒前
10秒前
酷波er应助小包包采纳,获得10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124