衰老
生物
DNA损伤
细胞生物学
端粒
顺铂
共济失调毛细血管扩张
激酶
老化
程序性细胞死亡
癌症研究
细胞凋亡
遗传学
DNA
化疗
作者
Yingchao Han,Chaoming Zhou,Hongxing Shen,Jun Tan,Qing Dong,Lei Zhang,Sara J. McGowan,Jing Zhao,Gwendolyn Sowa,James D. Kang,Laura J. Niedernhofer,Paul D. Robbins,Nam Vo
出处
期刊:Aging Cell
[Wiley]
日期:2020-06-21
卷期号:19 (7)
被引量:17
摘要
Abstract Previously, we reported that persistent DNA damage accelerates ageing of the spine, but the mechanisms behind this process are not well understood. Ataxia telangiectasia mutated (ATM) is a protein kinase involved in the DNA damage response, which controls cell fate, including cell death. To test the role of ATM in the human intervertebral disc, we exposed human nucleus pulposus (hNP) cells directly to the DNA damaging agent cisplatin. Cisplatin‐treated hNP cells exhibited rapid phosphorylation of ATM and subsequent increased NF‐κB activation, aggrecanolysis, decreased total proteoglycan production and increased expression of markers of senescence, including p21, γH 2 AX and SA‐ß‐gal. Treating cisplatin‐exposed hNP cells with an ATM‐specific inhibitor negated these effects. In addition, genetic reduction of ATM reduced disc cellular senescence and matrix proteoglycan loss in the progeroid Ercc1 −/∆ mouse model of accelerated ageing. These findings suggest that activation of ATM signalling under persistent genotoxic stress promotes disc cellular senescence and matrix homeostatic perturbation. Thus, the ATM signalling pathway represents a therapeutic target to delay the progression of age‐associated spine pathologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI