电化学
离子
锰
锂(药物)
晶体结构
阴极
材料科学
兴奋剂
格子(音乐)
钠
电极
无机化学
化学
结晶学
物理化学
光电子学
冶金
物理
有机化学
医学
声学
内分泌学
作者
Kai Zhang,Hang Sheng,Xiongwei Wu,Lijun Fu,Zhonghua Liu,Chunjiao Zhou,Rudolf Holze,Yuping Wu
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2020-09-03
卷期号:3 (9): 8953-8959
被引量:31
标识
DOI:10.1021/acsaem.0c01402
摘要
Li-rich manganese base oxides with a high specific capacity of nearly 300 mA h g–1 are acting as the most superior cathode material for high-energy density lithium-ion batteries. However, voltage decaying and poor rate capability critically restrict their applications. In order to solve this problem, the Na ion was used to dope into the lattice of the Li-rich manganese base oxides through solid-state reactions. All prepared samples are highly crystalline, and Na+ is uniformly distributed. The doping of Na+ does not adversely affect the parallel crystal plane structure. The charge–discharge capacities can be effectively increased by doping of Na ions. The rate performance of Li1.2Na0.03[Ni0.2464Mn0.462Co0.0616]O2 (LNa0.03NMC) is improved significantly, and the discharge capacities are 248, 234, 209, 190, 172, and 138 mA h·g–1 at 0.1, 0.2, 0.5, 1, 2, and 5 C, respectively. After 110 cycles of Li1.2Na0.03[Ni0.2464Mn0.462Co0.0616]O2 at 1 C, the reversible capacity only reduced from the initial 194.4–188.9 mA h·g–1 and only attenuates from 3.710 to 3.622 V of average discharge voltage. This work demonstrates that doping of Na ions not only stabilizes lattice layers of lithium-rich layered cathode but also facilitates the diffusion of Li ions in the crystal lattice.
科研通智能强力驱动
Strongly Powered by AbleSci AI