<p>Predicting Lung Cancer Risk of Incidental Solid and Subsolid Pulmonary Nodules in Different Sizes</p>

医学 恶性肿瘤 肺癌 结核(地质) 单变量分析 逻辑回归 肺孤立结节 放射科 内科学 多元分析 生物 古生物学
作者
Rui Zhang,Panwen Tian,Bojiang Chen,Yongzhao Zhou,Weimin Li
出处
期刊:Cancer management and research [Dove Medical Press]
卷期号:Volume 12: 8057-8066 被引量:11
标识
DOI:10.2147/cmar.s256719
摘要

Malignancy prediction models for pulmonary nodules are most accurate when used within nodules similar to those in which they were developed. This study was to establish models that respectively predict malignancy risk of incidental solid and subsolid pulmonary nodules of different size.This retrospective study enrolled patients with 5-30 mm pulmonary nodules who had a histopathologic diagnosis of benign or malignant. The median time to lung cancer diagnosis was 25 days. Four training/validation datasets were assembled based on nodule texture and size: subsolid nodules (SSNs) ≤15 mm, SSNs between 15 and 30 mm, solid nodules ≤15 mm and those between 15 and 30 mm. Univariate logistic regression was used to identify potential predictors, and multivariate analysis was used to build four models.The study identified 1008 benign and 1813 malignant nodules from a single hospital, and by random selection 1008 malignant nodules were enrolled for further analysis. There was a much higher malignancy rate among SSNs than solid nodules (rate, 75% vs 39%, P<0.001). Four distinguishing models were respectively developed and the areas under the curve (AUC) in training sets and validation sets were 0.83 (0.78-0.88) and 0.70 (0.61-0.80) for SSNs ≤15 mm, 0.84 (0.74-0.93) and 0.72 (0.57-0.87) for SSNs between 15 and 30 mm, 0.82 (0.77-0.87) and 0.71 (0.61-0.80) for solid nodules ≤15 mm, 0.82 (0.79-0.85) and 0.81 (0.76-0.86) for solid nodules between 15 and 30 mm. Each model showed good calibration and potential clinical applications. Different independent predictors were identified for solid nodules and SSNs of different size.We developed four models to help characterize subsolid and solid pulmonary nodules of different sizes. The established models may provide decision-making information for thoracic radiologists and clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
顾夏包完成签到,获得积分10
2秒前
小土豆发布了新的文献求助50
3秒前
科研通AI5应助跑在颖采纳,获得10
3秒前
追寻代真发布了新的文献求助10
4秒前
mrmrer完成签到,获得积分20
4秒前
4秒前
4秒前
毛慢慢发布了新的文献求助10
5秒前
5秒前
今天不学习明天变垃圾完成签到,获得积分10
5秒前
6秒前
6秒前
布布完成签到,获得积分10
7秒前
一独白发布了新的文献求助10
7秒前
周周完成签到 ,获得积分10
7秒前
淡然完成签到,获得积分10
8秒前
明理小土豆完成签到,获得积分10
8秒前
刘国建郭菱香完成签到,获得积分10
8秒前
嘤嘤嘤完成签到,获得积分10
8秒前
九川应助粱自中采纳,获得10
8秒前
无辜之卉完成签到,获得积分10
9秒前
无花果应助Island采纳,获得10
9秒前
9秒前
SHDeathlock发布了新的文献求助200
10秒前
Owen应助醒醒采纳,获得10
10秒前
无心的代桃完成签到,获得积分10
11秒前
追寻代真完成签到,获得积分10
11秒前
晓兴兴完成签到,获得积分10
11秒前
leon发布了新的文献求助10
12秒前
洽洽瓜子shine完成签到,获得积分10
12秒前
简单的大白菜真实的钥匙完成签到,获得积分10
13秒前
14秒前
一独白完成签到,获得积分10
15秒前
在水一方应助坚强的樱采纳,获得10
15秒前
慕青应助尼亚吉拉采纳,获得10
16秒前
快乐小白菜应助甜酱采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762