Estimation of Yttrium-90 Distribution in Liver Radioembolization using Computational Fluid Dynamics and Deep Neural Networks

剂量学 计算机科学 人工神经网络 计算流体力学 人工智能 机器学习 算法 核医学 物理 医学 机械
作者
Amirtahà Taebi,Catherine T. Vu,Emilie Roncali
出处
期刊:International Conference of the IEEE Engineering in Medicine and Biology Society 被引量:3
标识
DOI:10.1109/embc44109.2020.9176328
摘要

Yttrium-90 (90Y) radioembolization is a liver cancer therapy based on 90Y microspheres injected into the hepatic artery. Current dosimetry methods used to estimate the absorbed dose in order to prescribe the 90Y activity to inject are not accurate, which can affect the treatment effectiveness. A new dosimetry based on the hemodynamics simulation of the hepatic arterial tree, CFDose, aimed at overcoming some of the limitations of the current methods. However, due to the expensive computational cost of computational fluid dynamics (CFD) simulations, this method needs to be accelerated before it can be used in real-time during treatment planning. In this paper, we introduce a convolutional neural network model trained with the CFD results of a patient with hepatocellular carcinoma to predict the 90Y distribution under different downstream vasculature resistance conditions. The model performance was evaluated using two metrics, the mean squared error and prediction accuracy. The prediction accuracy showed that the average difference between the actual and predicted data was less than 1%. The proposed model could estimate the 90Y distribution significantly faster than a CFD simulation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
orixero应助YUMI采纳,获得10
2秒前
周游完成签到 ,获得积分10
2秒前
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
Sky36001发布了新的文献求助10
4秒前
丘比特应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
yznfly应助科研通管家采纳,获得20
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
4秒前
yznfly应助科研通管家采纳,获得20
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863