分解水
析氧
磷化物
制氢
化学工程
双金属片
材料科学
电化学
阳极
无机化学
纳米技术
催化作用
化学
物理化学
冶金
电极
有机化学
工程类
镍
金属
光催化
作者
Ding Chen,Ruihu Lu,Zonghua Pu,Jiawei Zhu,Haiwen Li,Fang Liu,Song Hu,Xu Luo,Jinsong Wu,Yan Zhao,Shichun Mu
标识
DOI:10.1016/j.apcatb.2020.119396
摘要
The resplendent prospect of water splitting hydrogen production technology makes the development of efficient and stable hydrogen/oxygen evolution reactions (HER/OER) bifunctional catalysts become urgent. Herein, inspired by the density function theory (DFT) calculation result that Ru-dopants have a climbing effect on both OER and HER processes, we construct a Ru doped three-dimensional flower-like bimetallic phosphide on nickel foam (Ru-NiCoP/NF) derived from Co leaf-like zeolitic imidazolate framework (Co ZIF-L), effectively driving both OER ([email protected] mA cm−2) and HER ([email protected] mA cm−2) in 1 M KOH solutions. The overall water splitting device assembled by using Ru-NiCoP/NF as both anode and cathode shows an ultralow cell voltage of 1.515 V to obtain 10 mA cm−2. Interestingly, almost 100 % Faradic yield is achieved for the overall water splitting. This work represents a significant addition to exploring a new class of transition metal phosphides with outstanding performance in producing hydrogen via electrochemical water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI