Comparison of Speeded-Up Robust Feature (SURF) and Oriented FAST and Rotated BRIEF (ORB) Methods in Identifying Museum Objects Using Low Light Intensity Images

Orb(光学) 人工智能 特征(语言学) 匹配(统计) 失真(音乐) 计算机视觉 计算机科学 数字图像 对象(语法) 特征提取 图像拼接 图像(数学) 数学 图像处理 统计 放大器 计算机网络 哲学 语言学 带宽(计算)
作者
Andika Setiawan,Rajif Agung Yunmar,Hartanto Tantriawan
出处
期刊:IOP conference series [IOP Publishing]
卷期号:537 (1): 012025-012025 被引量:9
标识
DOI:10.1088/1755-1315/537/1/012025
摘要

Abstract Museum is a place of education and learning in the field of culture and history for all levels of society. As one of the first and largest museums in Lampung, Museum Lampung presents a variety of collections that are conditional on cultural values and are very useful if they can be identified through digital media. Speeded-Up Robust Feature (SURF) and Oriented FAST and Rotated BRIEF (ORB) methods are two examples of feature extraction methods that are relatively robust for object recognition in images by finding key points. Digital media determined by the value of key points in this study are images that are classified as having low intensity with an intensity value of <2250 Lux. This study compares the two methods using the digital object media of museum objects. The image of the museum object is given treatment in terms of rotation, scaling, and cropping to test the durability of the image matching process. In terms of feature matching time, the best time is achieved by SURF with 0.16 seconds in testing of 1/3 image region. Meanwhile, the highest matching percentage was also obtained by SURF method from rotational distortion at an angle of 90 degrees which is 76.79% instead of to 63.79% of the percentage obtained by ORB.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
快乐滑板应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
刚刚
快乐滑板应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
Hello应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
快乐滑板应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
599发布了新的文献求助10
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
niNe3YUE应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
zhonglv7应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得30
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
852应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5775681
求助须知:如何正确求助?哪些是违规求助? 5625393
关于积分的说明 15439397
捐赠科研通 4907935
什么是DOI,文献DOI怎么找? 2641025
邀请新用户注册赠送积分活动 1588807
关于科研通互助平台的介绍 1543677