Comparison of Speeded-Up Robust Feature (SURF) and Oriented FAST and Rotated BRIEF (ORB) Methods in Identifying Museum Objects Using Low Light Intensity Images

Orb(光学) 人工智能 特征(语言学) 匹配(统计) 失真(音乐) 计算机视觉 计算机科学 数字图像 对象(语法) 特征提取 图像拼接 图像(数学) 数学 图像处理 统计 放大器 计算机网络 哲学 语言学 带宽(计算)
作者
Andika Setiawan,Rajif Agung Yunmar,Hartanto Tantriawan
出处
期刊:IOP conference series [IOP Publishing]
卷期号:537 (1): 012025-012025 被引量:9
标识
DOI:10.1088/1755-1315/537/1/012025
摘要

Abstract Museum is a place of education and learning in the field of culture and history for all levels of society. As one of the first and largest museums in Lampung, Museum Lampung presents a variety of collections that are conditional on cultural values and are very useful if they can be identified through digital media. Speeded-Up Robust Feature (SURF) and Oriented FAST and Rotated BRIEF (ORB) methods are two examples of feature extraction methods that are relatively robust for object recognition in images by finding key points. Digital media determined by the value of key points in this study are images that are classified as having low intensity with an intensity value of <2250 Lux. This study compares the two methods using the digital object media of museum objects. The image of the museum object is given treatment in terms of rotation, scaling, and cropping to test the durability of the image matching process. In terms of feature matching time, the best time is achieved by SURF with 0.16 seconds in testing of 1/3 image region. Meanwhile, the highest matching percentage was also obtained by SURF method from rotational distortion at an angle of 90 degrees which is 76.79% instead of to 63.79% of the percentage obtained by ORB.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧剑心发布了新的文献求助10
刚刚
zby发布了新的文献求助10
1秒前
Lucas应助Arthur采纳,获得10
1秒前
orixero应助令狐擎宇采纳,获得10
2秒前
2秒前
2秒前
爆米花应助KEHUGE采纳,获得10
2秒前
平泽唯发布了新的文献求助10
3秒前
爆米花应助土豆采纳,获得30
3秒前
隐形曼青应助Hwj采纳,获得10
4秒前
5秒前
5秒前
Zx_1993应助lele采纳,获得30
6秒前
海绵宝宝完成签到 ,获得积分10
6秒前
nn关注了科研通微信公众号
7秒前
科研通AI6应助时行舒采纳,获得10
8秒前
8秒前
于冰清发布了新的文献求助10
9秒前
薯条完成签到,获得积分10
9秒前
10秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
高血压发布了新的文献求助10
15秒前
15秒前
15秒前
于冰清完成签到,获得积分20
17秒前
17秒前
852应助求索采纳,获得10
17秒前
甜筒发布了新的文献求助10
17秒前
17秒前
浮游应助st采纳,获得10
19秒前
叮当的猫完成签到,获得积分10
19秒前
小艾发布了新的文献求助10
20秒前
21秒前
sinewaves发布了新的文献求助10
21秒前
杨莹发布了新的文献求助10
21秒前
JamesPei应助Sledge采纳,获得10
22秒前
高血压完成签到,获得积分10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547632
求助须知:如何正确求助?哪些是违规求助? 4633117
关于积分的说明 14629382
捐赠科研通 4574643
什么是DOI,文献DOI怎么找? 2508462
邀请新用户注册赠送积分活动 1484914
关于科研通互助平台的介绍 1455971