索波列夫空间
数学
不稳定性
超临界流体
非线性系统
摄动(天文学)
背景(考古学)
临界质量(社会动力学)
非线性薛定谔方程
数学分析
薛定谔方程
物理
量子力学
社会学
古生物学
热力学
生物
社会科学
标识
DOI:10.1016/j.jfa.2020.108610
摘要
We study existence and properties of ground states for the nonlinear Schrödinger equation with combined power nonlinearities−Δu=λu+μ|u|q−2u+|u|2⁎−2uin RN, N≥3, having prescribed mass∫RN|u|2=a2, in the Sobolev critical case. For a L2-subcritical, L2-critical, of L2-supercritical perturbation μ|u|q−2u we prove several existence/non-existence and stability/instability results. This study can be considered as a counterpart of the Brezis-Nirenberg problem in the context of normalized solutions, and seems to be the first contribution regarding existence of normalized ground states for the Sobolev critical NLSE in the whole space RN.
科研通智能强力驱动
Strongly Powered by AbleSci AI