医学
前列腺癌
前列腺
分级(工程)
预言
分类器(UML)
计分系统
人工智能
放射科
医学物理学
深度学习
内科学
病理
癌症
计算机科学
数据挖掘
土木工程
工程类
作者
Wouter Bulten,Hans Pinckaers,Hester van Boven,Robert Vink,Thomas de Bel,Bram van Ginneken,Jeroen van der Laak,Christina Hulsbergen‐van de Kaa,Geert Litjens
标识
DOI:10.1016/s1470-2045(19)30739-9
摘要
The Gleason score is the most important prognostic marker for prostate cancer patients but suffers from significant inter-observer variability. We developed a fully automated deep learning system to grade prostate biopsies. The system was developed using 5834 biopsies from 1243 patients. A semi-automatic labeling technique was used to circumvent the need for full manual annotation by pathologists. The developed system achieved a high agreement with the reference standard. In a separate observer experiment, the deep learning system outperformed 10 out of 15 pathologists. The system has the potential to improve prostate cancer prognostics by acting as a first or second reader.
科研通智能强力驱动
Strongly Powered by AbleSci AI