Automated Skeletal Classification with Lateral Cephalometry Based on Artificial Intelligence

头影 头影测量 接收机工作特性 计算机科学 人工智能 卷积神经网络 头影测量分析 追踪 矢状面 模式识别(心理学) 诊断准确性 口腔正畸科 机器学习 医学 错牙合 放射科 覆岩 操作系统
作者
Hee-Jin Yu,S.R. Cho,Minji Kim,W.H. Kim,Jin‐Woo Kim,Jongeun Choi
出处
期刊:Journal of Dental Research [SAGE]
卷期号:99 (3): 249-256 被引量:164
标识
DOI:10.1177/0022034520901715
摘要

Lateral cephalometry has been widely used for skeletal classification in orthodontic diagnosis and treatment planning. However, this conventional system, requiring manual tracing of individual landmarks, contains possible errors of inter- and intravariability and is highly time-consuming. This study aims to provide an accurate and robust skeletal diagnostic system by incorporating a convolutional neural network (CNN) into a 1-step, end-to-end diagnostic system with lateral cephalograms. A multimodal CNN model was constructed on the basis of 5,890 lateral cephalograms and demographic data as an input. The model was optimized with transfer learning and data augmentation techniques. Diagnostic performance was evaluated with statistical analysis. The proposed system exhibited >90% sensitivity, specificity, and accuracy for vertical and sagittal skeletal diagnosis. Clinical performance of the vertical classification showed the highest accuracy at 96.40 (95% CI, 93.06 to 98.39; model III). The receiver operating characteristic curve and the area under the curve both demonstrated the excellent performance of the system, with a mean area under the curve >95%. The heat maps of cephalograms were also provided for deeper understanding of the quality of the learned model by visually representing the region of the cephalogram that is most informative in distinguishing skeletal classes. In addition, we present broad applicability of this system through subtasks. The proposed CNN-incorporated system showed potential for skeletal orthodontic diagnosis without the need for intermediary steps requiring complicated diagnostic procedures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助典雅的芮采纳,获得10
1秒前
2秒前
2秒前
orixero应助奋斗的盼柳采纳,获得10
3秒前
4秒前
神勇映雁完成签到,获得积分10
4秒前
草草完成签到,获得积分10
4秒前
小青山啊完成签到,获得积分10
4秒前
4秒前
曼陀山庄完成签到,获得积分10
5秒前
5秒前
wzd发布了新的文献求助10
5秒前
5秒前
成就映秋发布了新的文献求助10
5秒前
5秒前
medaW完成签到,获得积分10
5秒前
Jason完成签到 ,获得积分10
5秒前
xrw完成签到,获得积分10
6秒前
晴晴完成签到,获得积分10
6秒前
6秒前
迅捷发布了新的文献求助10
6秒前
阿辉完成签到,获得积分10
7秒前
Ceramic发布了新的文献求助10
7秒前
8秒前
123完成签到,获得积分10
8秒前
巾帼发布了新的文献求助10
9秒前
我是老大应助神勇映雁采纳,获得10
9秒前
33完成签到,获得积分10
10秒前
10秒前
sun发布了新的文献求助10
10秒前
tt发布了新的文献求助10
10秒前
zho应助111采纳,获得10
11秒前
科目三应助yyyy采纳,获得10
11秒前
stuffmatter应助成就映秋采纳,获得10
11秒前
天天快乐应助。。采纳,获得10
11秒前
12秒前
12秒前
深情安青应助橡皮泥采纳,获得50
12秒前
kk119完成签到,获得积分10
12秒前
科yt完成签到,获得积分10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487388
求助须知:如何正确求助?哪些是违规求助? 3075425
关于积分的说明 9140718
捐赠科研通 2767617
什么是DOI,文献DOI怎么找? 1518712
邀请新用户注册赠送积分活动 703221
科研通“疑难数据库(出版商)”最低求助积分说明 701699