NIR-II/NIR-I Fluorescence Molecular Tomography of Heterogeneous Mice Based on Gaussian Weighted Neighborhood Fused Lasso Method

近红外光谱 高斯分布 光学相干层析成像 计算机科学 漫反射光学成像 材料科学 生物医学工程 光学 断层摄影术 迭代重建 人工智能 生物系统 物理 量子力学 医学 生物
作者
Meishan Cai,Zeyu Zhang,Xiaojing Shi,Zhenhua Hu,Jie Tian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 2213-2222 被引量:25
标识
DOI:10.1109/tmi.2020.2964853
摘要

Fluorescence molecular tomography (FMT), which can visualize the distribution of fluorescence biomarkers, has become a novel three-dimensional noninvasive imaging technique for in vivo studies such as tumor detection and lymph node location. However, it remains a challenging problem to achieve satisfactory reconstruction performance of conventional FMT in the first near-infrared window (NIR-I, 700-900nm) because of the severe scattering of NIR-I light. In this study, a promising FMT method for heterogeneous mice was proposed to improve the reconstruction accuracy using the second near-infrared window (NIR-II, 1000-1700nm), where the light scattering significantly reduced compared with NIR-I. The optical properties of NIR-II were analyzed to construct the forward model for NIR-II FMT. Furthermore, to raise the accuracy of solution of the inverse problem, we proposed a novel Gaussian weighted neighborhood fused Lasso (GWNFL) method. Numerical simulation was performed to demonstrate the outperformance of GWNFL compared with other algorithms. Besides, a novel NIR-II/NIR-I dual-modality FMT system was developed to contrast the in vivo reconstruction performance between NIR-II FMT and NIR-I FMT. To compare the reconstruction performance of NIR-II FMT with traditional NIR-I FMT, numerical simulations and in vivo experiments were conducted. Both the simulation and in vivo results showed that NIR-II FMT outperformed NIR-I FMT in terms of location accuracy and spatial overlap index. It is believed that this study could promote the development and biomedical application of NIR-II FMT in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
帅气的酸奶完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
科研通AI2S应助忧郁的寒天采纳,获得10
3秒前
3秒前
5秒前
5秒前
日富一日发布了新的文献求助10
6秒前
miao发布了新的文献求助10
6秒前
庾灭男完成签到,获得积分10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
ccccc应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
脑洞疼应助还单身的玫瑰采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
彭于彦祖应助科研通管家采纳,获得30
7秒前
YuuLoon应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
8秒前
大气早晨发布了新的文献求助10
8秒前
绿色植物发布了新的文献求助10
9秒前
犹豫的小之完成签到,获得积分10
9秒前
汉堡包应助落叶无悔采纳,获得10
9秒前
芋泥发布了新的文献求助10
10秒前
几酌应助liubo采纳,获得10
10秒前
10秒前
10秒前
11秒前
YuuLoon完成签到 ,获得积分10
11秒前
ding应助腼腆的绝山采纳,获得10
11秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159180
求助须知:如何正确求助?哪些是违规求助? 2810321
关于积分的说明 7887314
捐赠科研通 2469183
什么是DOI,文献DOI怎么找? 1314687
科研通“疑难数据库(出版商)”最低求助积分说明 630682
版权声明 602012