MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands

医学 肢端肥大症 接收机工作特性 内科学 垂体腺瘤 峰度 腺瘤 放射科 核医学 生长激素 激素 统计 数学
作者
Brandon P Galm,Colleen Buckless,Brooke Swearingen,Martin Torriani,Anne Klibanski,Miriam A. Bredella,Nicholas A. Tritos
出处
期刊:Pituitary [Springer Nature]
卷期号:23 (3): 212-222 被引量:17
标识
DOI:10.1007/s11102-019-01023-0
摘要

Given the paucity of reliable predictors of tumor recurrence, progression, or response to somatostatin receptor ligand (SRL) therapy in acromegaly, we attempted to determine whether preoperative MR image texture was predictive of these clinical outcomes. We also determined whether image texture could differentiate somatotroph adenomas from non-functioning pituitary adenomas (NFPAs). We performed a retrospective study of patients with acromegaly due to a macroadenoma who underwent transsphenoidal surgery at our institution between 2007 and 2015. Clinical data were extracted from electronic medical records. MRI texture analysis was performed on preoperative non-enhanced T1-weighted images using ImageJ (NIH). Logistic and Cox models were used to determine if image texture parameters predicted outcomes. Eighty-nine patients had texture parameters measured, which were compared to that of NFPAs, while 64 of these patients had follow-up and were included in the remainder of analyses. Minimum pixel intensity, skewness, and kurtosis were significantly different in somatotroph adenomas versus NFPAs (area under the receiver operating characteristic curve, 0.7771, for kurtosis). Furthermore, those with a maximum pixel intensity above the median had an increased odds of IGF-I normalization on SRL therapy (OR 5.96, 95% CI 1.33–26.66), which persisted after adjusting for several potential predictors of response. Image texture did not predict tumor recurrence or progression. Our data suggest that MRI texture analysis can distinguish NFPAs from somatotroph macroadenomas with good diagnostic accuracy and can predict normalization of IGF-I with SRL therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
crescent完成签到 ,获得积分10
2秒前
无奈傲菡发布了新的文献求助10
2秒前
烟花应助123号采纳,获得10
5秒前
超帅的遥完成签到,获得积分10
5秒前
Zxc完成签到,获得积分10
6秒前
lbt完成签到 ,获得积分10
7秒前
yao完成签到 ,获得积分10
8秒前
8秒前
10秒前
11秒前
11秒前
doudou完成签到 ,获得积分10
11秒前
BCS完成签到,获得积分10
11秒前
领导范儿应助KYN采纳,获得10
11秒前
12秒前
独特的莫言完成签到,获得积分10
14秒前
lin发布了新的文献求助10
15秒前
aero完成签到 ,获得积分10
17秒前
123号完成签到,获得积分10
19秒前
充电宝应助TT采纳,获得10
21秒前
22秒前
22秒前
英姑应助荒野星辰采纳,获得10
24秒前
24秒前
YHY完成签到,获得积分10
26秒前
科研通AI5应助魏伯安采纳,获得10
26秒前
caoyy发布了新的文献求助10
26秒前
27秒前
28秒前
张喻235532完成签到,获得积分10
29秒前
失眠虔纹发布了新的文献求助10
30秒前
香蕉觅云应助糊涂的小伙采纳,获得10
30秒前
30秒前
sutharsons应助科研通管家采纳,获得200
32秒前
打打应助科研通管家采纳,获得10
32秒前
axin应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
上官若男应助科研通管家采纳,获得10
32秒前
无花果应助科研通管家采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849