清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MRI texture analysis in acromegaly and its role in predicting response to somatostatin receptor ligands

医学 肢端肥大症 接收机工作特性 内科学 垂体腺瘤 峰度 腺瘤 放射科 核医学 生长激素 激素 统计 数学
作者
Brandon P Galm,Colleen Buckless,Brooke Swearingen,Martin Torriani,Anne Klibanski,Miriam A. Bredella,Nicholas A. Tritos
出处
期刊:Pituitary [Springer Science+Business Media]
卷期号:23 (3): 212-222 被引量:19
标识
DOI:10.1007/s11102-019-01023-0
摘要

Given the paucity of reliable predictors of tumor recurrence, progression, or response to somatostatin receptor ligand (SRL) therapy in acromegaly, we attempted to determine whether preoperative MR image texture was predictive of these clinical outcomes. We also determined whether image texture could differentiate somatotroph adenomas from non-functioning pituitary adenomas (NFPAs). We performed a retrospective study of patients with acromegaly due to a macroadenoma who underwent transsphenoidal surgery at our institution between 2007 and 2015. Clinical data were extracted from electronic medical records. MRI texture analysis was performed on preoperative non-enhanced T1-weighted images using ImageJ (NIH). Logistic and Cox models were used to determine if image texture parameters predicted outcomes. Eighty-nine patients had texture parameters measured, which were compared to that of NFPAs, while 64 of these patients had follow-up and were included in the remainder of analyses. Minimum pixel intensity, skewness, and kurtosis were significantly different in somatotroph adenomas versus NFPAs (area under the receiver operating characteristic curve, 0.7771, for kurtosis). Furthermore, those with a maximum pixel intensity above the median had an increased odds of IGF-I normalization on SRL therapy (OR 5.96, 95% CI 1.33–26.66), which persisted after adjusting for several potential predictors of response. Image texture did not predict tumor recurrence or progression. Our data suggest that MRI texture analysis can distinguish NFPAs from somatotroph macroadenomas with good diagnostic accuracy and can predict normalization of IGF-I with SRL therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WSY完成签到 ,获得积分10
1秒前
3秒前
酷炫的煎饼完成签到 ,获得积分10
4秒前
ChiahaoKuo完成签到 ,获得积分10
5秒前
yzq完成签到,获得积分20
6秒前
Amy完成签到 ,获得积分10
8秒前
16秒前
果酱发布了新的文献求助10
19秒前
yzq关注了科研通微信公众号
21秒前
自然亦凝完成签到,获得积分10
22秒前
浮游应助求助的小鸟采纳,获得10
23秒前
24秒前
一通百通发布了新的文献求助30
28秒前
果酱完成签到,获得积分10
28秒前
隐形曼青应助周曦采纳,获得10
36秒前
yzq发布了新的文献求助30
38秒前
科研通AI6应助科研通管家采纳,获得10
55秒前
55秒前
U87完成签到,获得积分10
56秒前
1分钟前
周曦发布了新的文献求助10
1分钟前
邓代容完成签到 ,获得积分0
1分钟前
Salvator完成签到 ,获得积分10
1分钟前
涛1完成签到 ,获得积分10
1分钟前
南浔完成签到 ,获得积分10
1分钟前
1分钟前
sunwsmile完成签到 ,获得积分10
1分钟前
JamesPei应助wzbc采纳,获得10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
无花果应助wzbc采纳,获得10
1分钟前
carl完成签到 ,获得积分10
1分钟前
xun完成签到,获得积分20
2分钟前
可爱紫文完成签到 ,获得积分10
2分钟前
梅子完成签到 ,获得积分10
2分钟前
长毛象完成签到 ,获得积分10
2分钟前
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
2分钟前
wzbc发布了新的文献求助10
3分钟前
huiluowork完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079238
求助须知:如何正确求助?哪些是违规求助? 4297595
关于积分的说明 13388491
捐赠科研通 4120645
什么是DOI,文献DOI怎么找? 2256742
邀请新用户注册赠送积分活动 1261052
关于科研通互助平台的介绍 1194981