已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Coumarin Communication Along the Microbiome–Root–Shoot Axis

微生物群 生物 开枪 植物 词根(语言学) 植物根系 香豆素 生物信息学 语言学 哲学
作者
Max Stassen,Shu-Hua Hsu,Corné M. J. Pieterse,Ioannis A. Stringlis
出处
期刊:Trends in Plant Science [Elsevier]
卷期号:26 (2): 169-183 被引量:153
标识
DOI:10.1016/j.tplants.2020.09.008
摘要

Bidirectional signaling occurs along the microbiome–root–shoot axis in plants much akin to that along the human microbiome–gut–brain axis. Production of plant secondary metabolites elicited by rhizosphere microbiota, such as coumarins, can directly impact the composition and activity of the microbial community. Microbially elicited production of secondary metabolites in the roots can act as intertissue messengers in plants. Coumarins are the ‘new kids on the block’ in the chemical communication along the microbiome–root–shoot axis. Plants shape their rhizosphere microbiome by secreting root exudates into the soil environment. Recently, root-exuded coumarins were identified as novel players in plant–microbiome communication. Beneficial members of the root-associated microbiome stimulate coumarin biosynthesis in roots and their excretion into the rhizosphere. The iron-mobilizing activity of coumarins facilitates iron uptake from the soil environment, while their selective antimicrobial activity shapes the root microbiome, resulting in promotion of plant growth and health. Evidence is accumulating that, in analogy to strigolactones and flavonoids, coumarins may act in microbiome-to-root-to-shoot signaling events. Here, we review this multifaceted role of coumarins in bidirectional chemical communication along the microbiome–root–shoot axis. Plants shape their rhizosphere microbiome by secreting root exudates into the soil environment. Recently, root-exuded coumarins were identified as novel players in plant–microbiome communication. Beneficial members of the root-associated microbiome stimulate coumarin biosynthesis in roots and their excretion into the rhizosphere. The iron-mobilizing activity of coumarins facilitates iron uptake from the soil environment, while their selective antimicrobial activity shapes the root microbiome, resulting in promotion of plant growth and health. Evidence is accumulating that, in analogy to strigolactones and flavonoids, coumarins may act in microbiome-to-root-to-shoot signaling events. Here, we review this multifaceted role of coumarins in bidirectional chemical communication along the microbiome–root–shoot axis. a molecular signaling pathway that is essential for plants to associate with AM fungi and for legumes specifically to engage in symbiosis with nitrogen-fixing rhizobacteria. This signaling pathway contains a set of conserved genes that are shared by the rhizobial and mycorrhizal associations. Upon perception of a microbial signal at the plasma membrane, a series of signal transduction cascades is activated involving the production of calcium oscillations, which are perceived by Ca+/calmodulin-dependent protein kinase (CCaMK). After this, there is transcriptional regulation of transcription factors and genes that coordinate the formation of symbiosis. a physiological state of the plant following root colonization by selected beneficial microbes or treatment with natural/synthetic compounds characterized by the launching of a faster and stronger defense response, resulting in enhanced resistance against future pathogen or insect attack or enhanced tolerance to abiotic stresses. the totality of microbial genomes and the functional traits of the microbiota present in a specific host tissue. the bidirectional communication between the gastrointestinal microbiota, the gut, and the central nervous system (brain) involving signals from the neuron system, immune system, and endocrine system that affect gut behavior, and the emotional status and fitness of the host. concept describing the bidirectional communication between rhizosphere microbiota, the plant root, and the aerial shoot tissue involving plant- or microbe-derived signals that affect plant growth, nutrition, and health. the combined population of all commensal, symbiotic, and pathogenic microbial organisms (including archaea, bacteria, fungi, and protists) that live in or on a host, such as the rhizosphere microbiota or gut microbiota. a secondary metabolite biosynthesis pathway in plants that generates a range of aromatic metabolites. Products of this pathway have roles in the resistance of plants to (a)biotic stresses, and in plant structural support and stress adaptation. Phenylpropanoid compounds are derived from the amino acid phenylalanine, the end-product of the shikimate pathway, through deamination by phenylalanine ammonia lyase (PAL). Phenylpropanoid natural compounds include hydroxycinnamic acid, flavonoid/isoflavonoids, lignans/lignin, coumarins, and stilbenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小样发布了新的文献求助50
刚刚
微光完成签到,获得积分10
刚刚
1秒前
整齐的蜻蜓完成签到 ,获得积分10
1秒前
身处人海完成签到,获得积分10
4秒前
4秒前
英俊的铭应助想游泳的鹰采纳,获得10
6秒前
凉白开发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
10秒前
vanshaw.vs发布了新的文献求助10
12秒前
12秒前
DarwinZC发布了新的文献求助10
14秒前
东阳发布了新的文献求助10
15秒前
16秒前
俞无声应助研友_alzhgo采纳,获得10
18秒前
18秒前
张可完成签到 ,获得积分10
19秒前
20秒前
23秒前
yoyo完成签到,获得积分10
23秒前
熄熄发布了新的文献求助10
24秒前
可爱的函函应助微光采纳,获得10
25秒前
勤恳的小馒头完成签到,获得积分10
25秒前
25秒前
clearlove完成签到 ,获得积分10
27秒前
yuki完成签到 ,获得积分10
27秒前
initialyyy完成签到,获得积分10
30秒前
史前巨怪完成签到,获得积分10
31秒前
34秒前
36秒前
wykion完成签到,获得积分10
37秒前
37秒前
38秒前
initialyyy发布了新的文献求助10
38秒前
39秒前
LSY发布了新的文献求助10
39秒前
superLmy完成签到 ,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466704
求助须知:如何正确求助?哪些是违规求助? 3059497
关于积分的说明 9066726
捐赠科研通 2749996
什么是DOI,文献DOI怎么找? 1508823
科研通“疑难数据库(出版商)”最低求助积分说明 697098
邀请新用户注册赠送积分活动 696896