富营养化
环境修复
沉积物
营养物
环境化学
环境科学
中观
沸石
缺氧(环境)
水生生态系统
化学
环境工程
污染
生态学
地质学
生物
氧气
古生物学
催化作用
有机化学
生物化学
作者
Honggang Zhang,Tao Lyu,Lixuan Liu,Zhenyuan Hu,Jun Chen,Bensheng Su,Jianwei Yu,Gang Pan
标识
DOI:10.1016/j.cej.2020.127206
摘要
An effective approach for control of internal nutrient loading and sediment hypoxia remains a longstanding challenge to the restoration of aquatic ecosystems. In order to simultaneously tackle these issues, a MultiFunction Geoengineering material (MFG) was developed for sediment remediation through the synergistic functions of physical capping, nutrient adsorption and delivery of O2 nanobubbles. The MFG, derived from natural zeolite, exhibited superior (1.5–4 times higher) adsorption capabilities for both phosphate (PO43−-P) and ammonium (NH4+-N), than pristine zeolite. The O2 adsorption capacity was also enhanced from 46, observed in the natural zeolite, to 121 mg O2/g for the MFG. An in-situ sediment capping experiment in a eutrophic lake demonstrated that the application of MFG dramatically reversed sediment hypoxia (ORP −200 mV) to an aerobic status (ORP 175 mV) and, furthermore, stimulated sediment microbial activity, particularly nitrifying bacteria. The MFG treatment resulted the sediment changing from a nutrient source to a sink through decreasing the cumulative PO43−-P and NH4+-N fluxes from the sediment by 124.6% and 131.1%, respectively. Moreover, the comprehensive functionalities of the material have been, for the first time, quantified, from which data O2 nanobubble delivery was determined to be the largest contributor, reducing the fluxes of PO43−-P and NH4+-N by 57.3% and 56.1% of, respectively. Our findings highlight the viability of such multifunctional material for the remediation of internal nutrient loads in lacustrine environments, towards sustainable eutrophication control.
科研通智能强力驱动
Strongly Powered by AbleSci AI