Instance Weighted Incremental Evolution Strategies for Reinforcement Learning in Dynamic Environments

强化学习 计算机科学 可扩展性 加权 新颖性 适应(眼睛) 人工智能 渐进式学习 机器学习 神学 医学 数据库 光学 物理 放射科 哲学
作者
Zhi Wang,Chunlin Chen,Dezun Dong
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 9742-9756 被引量:7
标识
DOI:10.1109/tnnls.2022.3160173
摘要

Evolution strategies (ESs), as a family of black-box optimization algorithms, recently emerge as a scalable alternative to reinforcement learning (RL) approaches such as Q-learning or policy gradient and are much faster when many central processing units (CPUs) are available due to better parallelization. In this article, we propose a systematic incremental learning method for ES in dynamic environments. The goal is to adjust previously learned policy to a new one incrementally whenever the environment changes. We incorporate an instance weighting mechanism with ES to facilitate its learning adaptation while retaining scalability of ES. During parameter updating, higher weights are assigned to instances that contain more new knowledge, thus encouraging the search distribution to move toward new promising areas of parameter space. We propose two easy-to-implement metrics to calculate the weights: instance novelty and instance quality. Instance novelty measures an instance's difference from the previous optimum in the original environment, while instance quality corresponds to how well an instance performs in the new environment. The resulting algorithm, instance weighted incremental evolution strategies (IW-IESs), is verified to achieve significantly improved performance on challenging RL tasks ranging from robot navigation to locomotion. This article thus introduces a family of scalable ES algorithms for RL domains that enables rapid learning adaptation to dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助科研通管家采纳,获得10
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
1秒前
CipherSage应助科研通管家采纳,获得20
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
能干的邹完成签到 ,获得积分10
1秒前
huihuiyve完成签到,获得积分10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
欢呼又夏完成签到,获得积分20
2秒前
3秒前
Plasmacas发布了新的文献求助10
3秒前
忧郁凌波发布了新的文献求助10
4秒前
4秒前
小木木壮发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
艾七七完成签到,获得积分10
5秒前
慕青应助lily336699采纳,获得30
5秒前
小二郎应助riverflowing采纳,获得10
5秒前
斯文败类应助上阳板栗采纳,获得10
6秒前
千愁完成签到,获得积分10
6秒前
认真的小刺猬完成签到,获得积分10
7秒前
完美世界应助罗伊黄采纳,获得10
7秒前
专注乐巧完成签到,获得积分20
8秒前
Kimi仔发布了新的文献求助10
9秒前
Maribo完成签到,获得积分10
9秒前
喜悦静枫完成签到,获得积分10
9秒前
9秒前
星星完成签到 ,获得积分10
9秒前
忧郁凌波完成签到,获得积分10
10秒前
congconglyu发布了新的文献求助10
10秒前
凶狠的妙柏完成签到,获得积分10
10秒前
Lx_B完成签到,获得积分10
11秒前
ucoco完成签到,获得积分10
11秒前
pm发布了新的文献求助10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304069
求助须知:如何正确求助?哪些是违规求助? 2938141
关于积分的说明 8486921
捐赠科研通 2612298
什么是DOI,文献DOI怎么找? 1426638
科研通“疑难数据库(出版商)”最低求助积分说明 662736
邀请新用户注册赠送积分活动 647301