已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An automated rice mapping method based on flooding signals in synthetic aperture radar time series

遥感 合成孔径雷达 阈值 洪水(心理学) 水田 环境科学 计算机科学 种植 人工智能 地理 农业 心理学 图像(数学) 考古 心理治疗师
作者
Pei Zhan,Wenquan Zhu,Nan Li
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:252: 112112-112112 被引量:64
标识
DOI:10.1016/j.rse.2020.112112
摘要

Paddy rice is one of the most important staple foods in the world, feeding over 50% of the global population. A quick and accurate mapping of the extent of paddy rice is of critical importance for ensuring food security, studying climate change and monitoring water resources. Based on Sentinel-1A data and rice flooding features, we proposed a rice mapping method called the Automated Rice Mapping using Synthetic Aperture Radar Flooding Signals (ARM-SARFS), in which the key “V” shaped feature in the Sentinel-1A VH backscatter time series rising from the flooding before and after rice transplanting was used for rice mapping. The ARM-SARFS was validated at three study sites in Hubei, Liaoning and Guangdong provinces in China under different rice cropping systems and different geographical and climate conditions. The results showed that even without any training samples, the ARM-SARFS was able to provide a satisfying classification result with an overall accuracy of over 86% and an F1 score of over 0.85 at all three study sites. With the aid of training samples, the classification performance increased further. When compared with the previously proposed Sentinel-1-based rice mapping methods, the ARM-SARFS improved the overall accuracy by 13.3–37.2%, and the most significant improvement was in the producer's accuracy. The sensitivity test showed that the ARM-SARFS is not sensitive to thresholding, and a high classification accuracy can be achieved at thresholds ranging from −0.025 to 0. These results demonstrated the robustness of ARM-SARFS for automated rice mapping with a high accuracy at large scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liulei发布了新的文献求助10
1秒前
3秒前
WGR12138发布了新的文献求助10
3秒前
思源应助如意的手套采纳,获得10
4秒前
过时的汲发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
7秒前
苗条大叔发布了新的文献求助10
9秒前
慕青应助潘锦麒采纳,获得10
9秒前
FashionBoy应助liulei采纳,获得10
9秒前
11秒前
胖莹完成签到 ,获得积分10
12秒前
15秒前
悦耳的亦旋完成签到,获得积分10
16秒前
caoj完成签到 ,获得积分10
16秒前
斯文败类应助莫欣宇采纳,获得10
17秒前
17秒前
十三完成签到 ,获得积分10
19秒前
蕾蕾发布了新的文献求助10
20秒前
蒋飞雪发布了新的文献求助10
23秒前
SciGPT应助蕾蕾采纳,获得10
24秒前
26秒前
菠萝完成签到 ,获得积分0
26秒前
Kiki完成签到 ,获得积分10
27秒前
27秒前
roy发布了新的文献求助10
27秒前
28秒前
caoju完成签到 ,获得积分10
29秒前
杨12完成签到,获得积分10
30秒前
过时的汲完成签到 ,获得积分10
30秒前
William完成签到 ,获得积分10
30秒前
英姑应助无风采纳,获得10
30秒前
积极的菠萝完成签到,获得积分10
31秒前
槑槑发布了新的文献求助20
31秒前
M旭旭发布了新的文献求助10
32秒前
无辜的惜寒完成签到 ,获得积分10
35秒前
YUZHAO完成签到,获得积分10
35秒前
Ranr发布了新的文献求助10
36秒前
36秒前
Solitude完成签到,获得积分10
36秒前
夜行完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925344
求助须知:如何正确求助?哪些是违规求助? 4195795
关于积分的说明 13030841
捐赠科研通 3967187
什么是DOI,文献DOI怎么找? 2174503
邀请新用户注册赠送积分活动 1191780
关于科研通互助平台的介绍 1101417