亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Beam Hardening Artifact Reduction in X-Ray CT Reconstruction of 3D Printed Metal Parts Leveraging Deep Learning and CAD Models

计算机辅助设计 计算机科学 硬化(计算) 材料科学 涡轮叶片 人工神经网络 工件(错误) 过程(计算) 人工智能 机械工程 工程制图 涡轮机 工程类 复合材料 图层(电子) 操作系统
作者
Amirkoushyar Ziabari,Singanallur Venkatakrishnan,Michael M. Kirka,Paul Brackman,Ryan Dehoff,Philip R. Bingham,Vincent Paquit
标识
DOI:10.1115/imece2020-23766
摘要

Abstract Nondestructive evaluation (NDE) of additively manufactured (AM) parts is important for understanding the impacts of various process parameters and qualifying the built part. X-ray computed tomography (XCT) has played a critical role in rapid NDE and characterization of AM parts. However, XCT of metal AM parts can be challenging because of artifacts produced by standard reconstruction algorithms as a result of a confounding effect called “beam hardening.” Beam hardening artifacts complicate the analysis of XCT images and adversely impact the process of detecting defects, such as pores and cracks, which is key to ensuring the quality of the parts being printed. In this work, we propose a novel framework based on using available computer-aided design (CAD) models for parts to be manufactured, accurate XCT simulations, and a deep-neural network to produce high-quality XCT reconstructions from data that are affected by noise and beam hardening. Using extensive experiments with simulated data sets, we demonstrate that our method can significantly improve the reconstruction quality, thereby enabling better detection of defects compared with the state of the art. We also present promising preliminary results of applying the deep networks trained using CAD models to experimental data obtained from XCT of an AM jet-engine turbine blade.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归海梦岚完成签到,获得积分0
6秒前
包容完成签到,获得积分10
7秒前
15秒前
爆米花应助牛大力采纳,获得10
23秒前
wll完成签到,获得积分10
25秒前
27秒前
VDC完成签到,获得积分0
28秒前
FashionBoy应助wll采纳,获得10
30秒前
爆米花应助小彭采纳,获得10
36秒前
Jasper应助pingping采纳,获得10
46秒前
ZH完成签到 ,获得积分10
48秒前
汉堡包应助Lee采纳,获得10
49秒前
55秒前
bcc666发布了新的文献求助10
1分钟前
隐形曼青应助bcc666采纳,获得10
1分钟前
1分钟前
江上烟完成签到,获得积分10
1分钟前
小彭发布了新的文献求助10
1分钟前
VDC应助江上烟采纳,获得30
1分钟前
英姑应助精明的谷丝采纳,获得10
1分钟前
哈哈哈哈完成签到 ,获得积分10
1分钟前
zfzf0422完成签到 ,获得积分10
1分钟前
1分钟前
精明的谷丝完成签到,获得积分10
1分钟前
1分钟前
我是老大应助Zhou采纳,获得10
1分钟前
1分钟前
Zhou发布了新的文献求助10
1分钟前
wanci应助ly采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
机智的小懒虫完成签到 ,获得积分10
2分钟前
欣欣发布了新的文献求助10
2分钟前
着急的语海完成签到,获得积分10
2分钟前
Jack80发布了新的文献求助200
2分钟前
2分钟前
2分钟前
Zhou发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555693
求助须知:如何正确求助?哪些是违规求助? 3131341
关于积分的说明 9390779
捐赠科研通 2831039
什么是DOI,文献DOI怎么找? 1556299
邀请新用户注册赠送积分活动 726483
科研通“疑难数据库(出版商)”最低求助积分说明 715803