药品
体内
两亲性
材料科学
小分子
药物输送
治疗指标
纳米颗粒
毒品携带者
组合化学
纳米技术
药理学
化学
聚合物
医学
共聚物
生物化学
生物
生物技术
复合材料
作者
Zhanzhan Zhang,Yu‐Xin Yue,Lina Xu,Ying Wang,Wen‐Chao Geng,Juan‐Juan Li,Xianglei Kong,Xinzhi Zhao,Yadan Zheng,Yu Zhao,Linqi Shi,Dong‐Sheng Guo,Yang Liu
标识
DOI:10.1002/adma.202007719
摘要
Abstract Combination chemotherapy refers to the use of multiple drugs to treat cancer. In this therapy, the optimal ratio of the drugs is essential to achieve drug synergism and the desired therapeutic effects. However, most delivery strategies are unable to precisely control the ratio of the drugs during the drug loading and delivery processes, resulting in inefficient synergy and unpredictable efficacy. Herein, a macrocyclic‐amphiphile‐based self‐assembled nanoparticle (MASN) that achieves precise loading and ratiometric delivery of therapeutic combinations is presented. By integrating multiple macrocyclic cavities within a single nanoparticle, the MASN can load multiple drug molecules via the host–guest interaction, and the ratio of the drugs loaded can be predicted with their initial concentrations and characteristic binding affinity. Moreover, MASNs are readily degraded under a hypoxic microenvironment, allowing spontaneous release of the drugs upon reaching tumor tissues. With precise drug loading and controlled release mechanisms, MASNs achieve ratiometric delivery of multiple commercial drugs to tumors, thereby achieving optimal anti‐tumor effects. Since the optimal drug ratio of a therapeutic combination can be quickly determined in vitro, MASNs can translate this optimal ratio to the therapeutic benefits in vivo, providing a potential platform for the rapid development of effective combination cancer therapies involving multiple drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI