Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis

背景(考古学) 医学 哮喘 人工智能 慢性阻塞性肺病 呼吸内科 机器学习 重症监护医学 计算机科学 内科学 外科 生物 古生物学
作者
Alan Kaplan,Hui Cao,J. Mark FitzGerald,Nick Iannotti,Eric Yang,Janwillem Kocks,Κonstantinos Κostikas,David Price,Helen K. Reddel,Ioanna Tsiligianni,Claus Vogelmeier,Pascal Pfister,Paul Mastoridis
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier BV]
卷期号:9 (6): 2255-2261 被引量:143
标识
DOI:10.1016/j.jaip.2021.02.014
摘要

Artificial intelligence (AI) and machine learning, a subset of AI, are increasingly used in medicine. AI excels at performing well-defined tasks, such as image recognition; for example, classifying skin biopsy lesions, determining diabetic retinopathy severity, and detecting brain tumors. This article provides an overview of the use of AI in medicine and particularly in respiratory medicine, where it is used to evaluate lung cancer images, diagnose fibrotic lung disease, and more recently is being developed to aid the interpretation of pulmonary function tests and the diagnosis of a range of obstructive and restrictive lung diseases. The development and validation of AI algorithms requires large volumes of well-structured data, and the algorithms must work with variable levels of data quality. It is important that clinicians understand how AI can function in the context of heterogeneous conditions such as asthma and chronic obstructive pulmonary disease where diagnostic criteria overlap, how AI use fits into everyday clinical practice, and how issues of patient safety should be addressed. AI has a clear role in providing support for doctors in the clinical workplace, but its relatively recent introduction means that confidence in its use still has to be fully established. Overall, AI is expected to play a key role in aiding clinicians in the diagnosis and management of respiratory diseases in the future, and it will be exciting to see the benefits that arise for patients and doctors from its use in everyday clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助灵巧的导师采纳,获得10
刚刚
杨一完成签到 ,获得积分10
刚刚
1秒前
Sunflower完成签到 ,获得积分10
2秒前
精明的芷荷完成签到,获得积分10
2秒前
FengyaoWang完成签到,获得积分10
3秒前
3秒前
Jasper应助喵叽采纳,获得10
4秒前
xwl9955完成签到 ,获得积分10
5秒前
王哒哒完成签到,获得积分10
6秒前
MFNM完成签到,获得积分10
6秒前
樊书雪完成签到,获得积分10
7秒前
qq完成签到,获得积分20
7秒前
幽默发卡完成签到,获得积分10
8秒前
嗯哼啊嘿嘿哟喂完成签到,获得积分10
8秒前
含糊的画板完成签到,获得积分10
12秒前
12秒前
三个地方户籍卡完成签到,获得积分10
14秒前
SamuelLiu完成签到,获得积分10
17秒前
小秋发布了新的文献求助10
18秒前
王磊完成签到,获得积分10
22秒前
123完成签到,获得积分10
23秒前
灵巧的导师完成签到,获得积分10
24秒前
Bressanone完成签到,获得积分10
25秒前
jimmy完成签到 ,获得积分10
26秒前
Yuan完成签到 ,获得积分10
27秒前
BUHUIWAN完成签到,获得积分20
27秒前
快乐的奕涵完成签到,获得积分10
28秒前
29秒前
无相完成签到 ,获得积分10
29秒前
痕丶歆完成签到 ,获得积分10
31秒前
自由的姿完成签到,获得积分10
31秒前
温柔梦易完成签到,获得积分10
31秒前
沙克几十块完成签到,获得积分10
31秒前
32秒前
ppc524完成签到,获得积分10
33秒前
潇湘夜雨完成签到,获得积分10
33秒前
小李叭叭完成签到,获得积分10
34秒前
wsr完成签到,获得积分10
34秒前
复杂的板凳完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965813
求助须知:如何正确求助?哪些是违规求助? 3511146
关于积分的说明 11156382
捐赠科研通 3245736
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268