亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis

重症监护医学 呼吸系统 计算机科学 内科学
作者
Alan Kaplan,Hui Cao,J. Mark FitzGerald,Nick Iannotti,Eric Yang,Janwillem W. H. Kocks,Konstantinos Kostikas,David Price,Helen K. Reddel,Ioanna Tsiligianni,Claus Vogelmeier,Pascal Pfister,Paul Mastoridis
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier]
卷期号:9 (6): 2255-2261 被引量:13
标识
DOI:10.1016/j.jaip.2021.02.014
摘要

Artificial intelligence (AI) and machine learning, a subset of AI, are increasingly used in medicine. AI excels at performing well-defined tasks, such as image recognition; for example, classifying skin biopsy lesions, determining diabetic retinopathy severity, and detecting brain tumors. This article provides an overview of the use of AI in medicine and particularly in respiratory medicine, where it is used to evaluate lung cancer images, diagnose fibrotic lung disease, and more recently is being developed to aid the interpretation of pulmonary function tests and the diagnosis of a range of obstructive and restrictive lung diseases. The development and validation of AI algorithms requires large volumes of well-structured data, and the algorithms must work with variable levels of data quality. It is important that clinicians understand how AI can function in the context of heterogeneous conditions such as asthma and chronic obstructive pulmonary disease where diagnostic criteria overlap, how AI use fits into everyday clinical practice, and how issues of patient safety should be addressed. AI has a clear role in providing support for doctors in the clinical workplace, but its relatively recent introduction means that confidence in its use still has to be fully established. Overall, AI is expected to play a key role in aiding clinicians in the diagnosis and management of respiratory diseases in the future, and it will be exciting to see the benefits that arise for patients and doctors from its use in everyday clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凡人丿完成签到,获得积分10
1秒前
活力鸿完成签到,获得积分20
2秒前
9秒前
shenhai发布了新的文献求助10
13秒前
K神完成签到,获得积分10
17秒前
18秒前
30秒前
33秒前
flow发布了新的文献求助10
33秒前
小炮仗完成签到 ,获得积分10
35秒前
哭泣秋蝶发布了新的文献求助10
37秒前
flow完成签到,获得积分10
39秒前
宝贝完成签到,获得积分10
41秒前
jasam3514完成签到,获得积分10
42秒前
43秒前
贺兰完成签到,获得积分10
43秒前
44秒前
shenhai发布了新的文献求助10
48秒前
青花菜鱼得啦完成签到 ,获得积分10
51秒前
cherrychou完成签到,获得积分10
54秒前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
1分钟前
mushanes完成签到 ,获得积分10
1分钟前
orixero应助结实的虔纹采纳,获得30
1分钟前
1分钟前
EasonL完成签到,获得积分10
1分钟前
程住气完成签到 ,获得积分10
1分钟前
1分钟前
akkk626完成签到 ,获得积分10
1分钟前
卧镁铀钳完成签到 ,获得积分10
1分钟前
DD完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
梵莫完成签到,获得积分10
1分钟前
1分钟前
哭泣秋蝶发布了新的文献求助10
2分钟前
2分钟前
爆米花应助观澜采纳,获得10
2分钟前
Ava应助哲别采纳,获得10
2分钟前
Elena完成签到,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989