Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics

制冷剂 过冷 冷凝 热力学 均方误差 材料科学 气体压缩机 数学 沸腾 统计 物理
作者
Yechan Yun,Young Soo Chang
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (4): 1780-1780 被引量:9
标识
DOI:10.3390/app11041780
摘要

Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached a severe degree. Various techniques have been developed to predict the refrigerant charge amount based on steady-state operation; however, steady-state experiments used to develop prediction models for the refrigerant charge amount are expensive and time-consuming. In this study, a prediction model was established with dynamic experimental data to overcome these deficiencies. The dynamic models for the condensation temperature, degree of subcooling, compressor discharge temperature, and power consumption were developed with a regression support vector machine (r-SVM) model and start-up experimental data. The dynamic models for the condensation temperature and degree of subcooling can predict the distinct start-up characteristics depending on the refrigerant charge amount. Moreover, the estimated root mean square error (RMSE) of the condensation temperature and degree of subcooling of the test data are 0.53 and 0.84 °C, respectively. The refrigerant charge is one of the predictors that defines the dynamic characteristics. The refrigerant charge can be estimated by minimizing the RMSE of the predicted values of the dynamic models and experimental data. When the dynamic characteristics of the two predictor variables, “condensation temperature” and “degree of subcooling” are used together, the average prediction error of the test data is 2.54%. The proposed method, which uses the dynamic model during start-up operation, is an effective technique for predicting the refrigerant charge amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Promise发布了新的文献求助10
3秒前
susususu发布了新的文献求助10
3秒前
3秒前
风槿完成签到 ,获得积分10
3秒前
5秒前
情怀应助ww采纳,获得10
5秒前
luli发布了新的文献求助10
8秒前
8秒前
温润而清应助勤恳的饭饭采纳,获得30
9秒前
小研完成签到,获得积分10
9秒前
汉堡包应助明理春天采纳,获得10
10秒前
10秒前
10秒前
10秒前
11111完成签到,获得积分10
10秒前
ZHAO发布了新的文献求助10
10秒前
太清发布了新的文献求助10
11秒前
十二关注了科研通微信公众号
11秒前
12秒前
科研通AI2S应助卷就完了采纳,获得10
13秒前
13秒前
13秒前
大道酬勤发布了新的文献求助10
13秒前
keeeir完成签到,获得积分10
14秒前
猫咪老师应助舒心靖琪采纳,获得30
15秒前
积极的沛文完成签到,获得积分10
15秒前
一一完成签到,获得积分10
15秒前
shanshan发布了新的文献求助10
16秒前
17秒前
GGGGEEEE应助优美的从灵采纳,获得10
17秒前
可爱的函函应助小肉包采纳,获得10
18秒前
慕青应助杨玄采纳,获得10
18秒前
19秒前
bbq发布了新的文献求助10
19秒前
英俊的铭应助Shandongdaxiu采纳,获得10
20秒前
黑犬发布了新的文献求助10
20秒前
21秒前
ZHAO完成签到,获得积分10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259528
求助须知:如何正确求助?哪些是违规求助? 2901148
关于积分的说明 8314112
捐赠科研通 2570492
什么是DOI,文献DOI怎么找? 1396557
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631633