Refrigerant Charge Prediction of Vapor Compression Air Conditioner Based on Start-Up Characteristics

制冷剂 过冷 冷凝 热力学 均方误差 材料科学 气体压缩机 数学 沸腾 统计 物理
作者
Yechan Yun,Young Soo Chang
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 1780-1780 被引量:10
标识
DOI:10.3390/app11041780
摘要

Refrigerant charge faults, which occur frequently, increase the energy loss and may fatally damage the system. Refrigerant leakage is difficult to detect and diagnose until the fault has reached a severe degree. Various techniques have been developed to predict the refrigerant charge amount based on steady-state operation; however, steady-state experiments used to develop prediction models for the refrigerant charge amount are expensive and time-consuming. In this study, a prediction model was established with dynamic experimental data to overcome these deficiencies. The dynamic models for the condensation temperature, degree of subcooling, compressor discharge temperature, and power consumption were developed with a regression support vector machine (r-SVM) model and start-up experimental data. The dynamic models for the condensation temperature and degree of subcooling can predict the distinct start-up characteristics depending on the refrigerant charge amount. Moreover, the estimated root mean square error (RMSE) of the condensation temperature and degree of subcooling of the test data are 0.53 and 0.84 °C, respectively. The refrigerant charge is one of the predictors that defines the dynamic characteristics. The refrigerant charge can be estimated by minimizing the RMSE of the predicted values of the dynamic models and experimental data. When the dynamic characteristics of the two predictor variables, “condensation temperature” and “degree of subcooling” are used together, the average prediction error of the test data is 2.54%. The proposed method, which uses the dynamic model during start-up operation, is an effective technique for predicting the refrigerant charge amount.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗树完成签到,获得积分10
1秒前
三三完成签到,获得积分10
1秒前
momo应助某某辣酱采纳,获得10
3秒前
Ava应助陈陈采纳,获得10
4秒前
马腾龙完成签到 ,获得积分10
6秒前
JamesPei应助可靠冰凡采纳,获得10
9秒前
田様应助苏黎世采纳,获得10
10秒前
上官若男应助迷路凌柏采纳,获得10
11秒前
多睡会儿完成签到 ,获得积分10
11秒前
xinxin完成签到,获得积分10
11秒前
12秒前
12秒前
完美世界应助zz采纳,获得10
12秒前
舍予完成签到,获得积分10
13秒前
13秒前
pluto应助persist采纳,获得10
14秒前
齐静春完成签到 ,获得积分10
15秒前
寒冷的雪珍完成签到,获得积分10
15秒前
15秒前
Dailei完成签到,获得积分10
15秒前
16秒前
CQ完成签到 ,获得积分10
16秒前
ky完成签到 ,获得积分10
17秒前
張医铄发布了新的文献求助10
17秒前
王小磊完成签到,获得积分10
18秒前
18秒前
WW发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
19秒前
20秒前
科研通AI2S应助ting采纳,获得10
20秒前
yangdong完成签到,获得积分10
20秒前
甲乙完成签到,获得积分10
20秒前
祝愿发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
Vicky发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992562
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262757
捐赠科研通 3273163
什么是DOI,文献DOI怎么找? 1805959
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809513