激光雷达
遥感
激光扫描
点云
树(集合论)
山毛榉
胸径
环境科学
体积热力学
均方误差
生物量(生态学)
森林资源清查
校准
每年落叶的
树木异速生长
数学
激光器
计算机科学
统计
林业
地理
生态学
农林复合经营
森林经营
物理
光学
生物
人工智能
数学分析
量子力学
生物量分配
作者
Benjamin Brede,Kim Calders,Alvaro Lau,Pasi Raumonen,Harm Bartholomeus,Martin Herold,Lammert Kooistra
标识
DOI:10.1016/j.rse.2019.111355
摘要
Above-Ground Biomass (AGB) product calibration and validation require ground reference plots at hectometric scales to match space-borne missions' resolution. Traditional forest inventory methods that use allometric equations for single tree AGB estimation suffer from biases and low accuracy, especially when dealing with large trees. Terrestrial Laser Scanning (TLS) and explicit tree modelling show high potential for direct estimates of tree volume, but at the cost of time demanding fieldwork. This study aimed to assess if novel Unmanned Aerial Vehicle Laser Scanning (UAV-LS) could overcome this limitation, while delivering comparable results. For this purpose, the performance of UAV-LS in comparison with TLS for explicit tree modelling was tested in a Dutch temperate forest. In total, 200 trees with Diameter at Breast Height (DBH) ranging from 6 to 91 cm from 5 stands, including coniferous and deciduous species, have been scanned, segmented and subsequently modelled with TreeQSM. TreeQSM is a method that builds explicit tree models from laser scanner point clouds. Direct comparison with TLS derived models showed that UAV-LS reliably modelled the volume of trunks and branches with diameter ≥30 cm in the mature beech and oak stand with Concordance Correlation Coefficient (CCC) of 0.85 and RMSE of1.12 m3. Including smaller branch volume led to a considerable overestimation and decrease in correspondence to CCC of 0.51 and increase in RMSE to 6.59 m3. Denser stands prevented sensing of trunks and further decreased CCC to 0.36 in the Norway spruce stand. Also small, young trees posed problems by preventing a proper depiction of the trunk circumference and decreased CCC to 0.01. This dependence on stand indicated a strong impact of canopy structure on the UAV-LS volume modelling capacity. Improved flight paths, repeated acquisition flights or alternative modelling strategies could improve UAV-LS modelling performance under these conditions. This study contributes to the use of UAV-LS for fast tree volume and AGB estimation on scales relevant for satellite AGB product calibration and validation.
科研通智能强力驱动
Strongly Powered by AbleSci AI