Three-dimensional dynamic compressive imaging system

计算机视觉 计算机科学 人工智能 帧速率 像素 数据压缩 压缩传感 结构光 计算机图形学(图像)
作者
Zhenghao Wang,Cheng-Yang Hu,Sigang Yang,Minghua Chen,Hongwei Chen
标识
DOI:10.1117/12.2585264
摘要

The current three-dimensional (3D) imaging technique of dynamic scene has some problems, such as a large amount of data and high requirements for the hardware equipment. To remedy these defects, we propose a novel 3D dynamic compressive imaging system that combines structured-light 3D surface imaging with temporal ghost imaging (TGI). The system aims to acquire a 3D video through single exposure imaging, and then restore the 3D dynamic scene through the post-processing algorithm. Since a slow camera can be used to capture 3D video, the system has the advantages of low detector bandwidth and low data volume. Specifically, a fringe pattern with a frequency component is projected onto a moving object to obtain 3D information, and then image the object onto the digital metal micro-mirror device (DMD) for pixel-by-pixel optical encoding to achieve video compression, finally, the camera captures an image in a single exposure. To decode the image, the optical intensity correlation is calculated to obtain the temporal frames, which retain the deformed fringe patterns modulated by the object, then the 3D surface profile of the frame can be reconstructed through Fourier fringe analysis and phase-height mapping. The experiment verifies two types of motion scenes, translation and rotation, 15-frame 3D video is compressed in one image, that is, the frame rate of the camera is increased by 15 times, and the equivalent compression ratio is 6.67%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shelly0621完成签到,获得积分10
1秒前
依旧发布了新的文献求助10
2秒前
APS发布了新的文献求助30
4秒前
哈哈哈嘿发布了新的文献求助10
4秒前
8秒前
applewinwin发布了新的文献求助10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
zho应助科研通管家采纳,获得10
10秒前
Singularity应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
kid1912应助科研通管家采纳,获得10
11秒前
11秒前
5度转角应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
nenoaowu应助科研通管家采纳,获得30
11秒前
嗯哼应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
不爱吃西葫芦完成签到 ,获得积分10
12秒前
12秒前
Jessie完成签到,获得积分10
14秒前
14秒前
浅枫完成签到 ,获得积分10
14秒前
zshhay发布了新的文献求助10
15秒前
17秒前
依旧完成签到,获得积分10
17秒前
17秒前
大模型应助啊浩o丶采纳,获得20
17秒前
17秒前
深情安青应助糟糕的铁锤采纳,获得10
18秒前
李健的小迷弟应助超A采纳,获得10
20秒前
20秒前
asd发布了新的文献求助100
22秒前
22秒前
在水一方应助方羽采纳,获得10
22秒前
哆啦梦发布了新的文献求助10
23秒前
applewinwin完成签到,获得积分10
24秒前
汉堡包应助Lucille采纳,获得10
26秒前
28秒前
28秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396382
求助须知:如何正确求助?哪些是违规求助? 3006132
关于积分的说明 8819791
捐赠科研通 2693217
什么是DOI,文献DOI怎么找? 1475217
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675580