238O Deep-learning magnetic resonance imaging radiomics predicts platinum-sensitivity in patients with epithelial ovarian cancer

医学 磁共振成像 队列 卵巢癌 化疗 揭穿 肿瘤科 内科学 癌症 放射科
作者
L. Ruilin,Ya‐Hui Yu,Q. Li,Yongtao Tan,Zhongxuan Lin,Herui Yao
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:31: S1336-S1336
标识
DOI:10.1016/j.annonc.2020.10.232
摘要

Platinum-sensitivity is an important basis for clinical choice of chemotherapy regimens for recurrent epithelial ovarian cancer (EOC) - without effective methods to predict. We aimed to develop and validate the EOC deep learning system to predict the platinum-sensitive of EOC patients through analysis of enhanced magnetic resonance imaging (MRI) images before initial treatment. Ninety-three EOC patients who received platinum-based chemotherapy (>= 4 cycles) and debulking surgery from Sun Yat-sen Memorial Hospital in China from January 2011 to January 2020 were enrolled. We defined platinum-resistant and platinum-refractory patients as platinum-resistant group, and patients who relapsed 6 months or more after initial platinum-base chemotherapy as platinum-sensitive group. Patients were collected and randomly assigned (2:1) to the training and validation cohorts. A deep learning model-Med3D (Resnet 10 version) was first applied to two MRI sequences (T1+C, T2WI) to automatically extract 1024 features of each patient, then established signatures to predict platinum resistance. The area under curve (AUC) of the whole MRI volume signature yielded was 0.97, 0.98 for the training and validation cohorts, respectively, which was better than that with the primary tumor signature (AUC 0.78 and 0.85 in training and validation cohorts, respectively). The whole MRI volume signature sensitivity was 0.96 in identifying platinum sensitivity in the training cohort, and validated in 0.96(95%CI 0.88-1.0) in the validation cohort. The whole MRI volume signature was superior in sensitivity than with MRI primary tumor signature (0.86 and 0.84 [95% CI 0.70-0.98] in training and validation cohort, respectively). The whole MRI volume signature’s specificity was 0.92 and 1 (95% CI 1.0-1.0) in the training and validation cohorts. The primary tumor MRI signature’s specificity was 0.77 and 0.66 (95% CI 0.28-1.0) in the training and validation cohorts. This deep-learning EOC signature achieved a high predictive power for platinum sensitivity, and the signature based on MRI whole volume is better than that on primary tumor area only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marshall完成签到 ,获得积分10
4秒前
尊敬秋双完成签到 ,获得积分10
8秒前
不爱吃鱼的猫完成签到,获得积分10
10秒前
月亮完成签到 ,获得积分10
10秒前
影像大侠完成签到,获得积分10
12秒前
踢球的孩子完成签到 ,获得积分10
14秒前
美丽的鞋垫完成签到 ,获得积分10
17秒前
nusiew完成签到,获得积分10
17秒前
tonydymt完成签到 ,获得积分10
18秒前
chenying完成签到 ,获得积分0
19秒前
mojomars完成签到,获得积分10
19秒前
TiY完成签到 ,获得积分10
20秒前
21秒前
zoe完成签到 ,获得积分10
23秒前
蓝意完成签到,获得积分0
25秒前
31秒前
雪白发卡完成签到,获得积分10
33秒前
xiaxiao完成签到,获得积分0
36秒前
田野的小家庭完成签到 ,获得积分10
37秒前
一隅完成签到 ,获得积分10
38秒前
刻苦的新烟完成签到 ,获得积分10
39秒前
六沉完成签到 ,获得积分10
40秒前
高挑的若雁完成签到 ,获得积分10
40秒前
siqilinwillbephd完成签到 ,获得积分10
41秒前
celia完成签到 ,获得积分10
45秒前
甚也完成签到 ,获得积分10
45秒前
你帅你有理完成签到,获得积分10
45秒前
阳佟水蓉完成签到,获得积分10
47秒前
一顿吃不饱完成签到,获得积分0
53秒前
99完成签到,获得积分10
55秒前
Sunnpy完成签到 ,获得积分10
56秒前
完美世界应助何博采纳,获得10
57秒前
allzzwell完成签到 ,获得积分10
59秒前
琥1完成签到,获得积分10
1分钟前
幸福妙柏完成签到 ,获得积分10
1分钟前
执着的忆雪完成签到 ,获得积分10
1分钟前
mcl发布了新的文献求助10
1分钟前
Hina完成签到,获得积分10
1分钟前
Ander完成签到 ,获得积分10
1分钟前
niumi190完成签到,获得积分0
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513391
关于积分的说明 11167428
捐赠科研通 3248822
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875116
科研通“疑难数据库(出版商)”最低求助积分说明 804664