238O Deep-learning magnetic resonance imaging radiomics predicts platinum-sensitivity in patients with epithelial ovarian cancer

医学 磁共振成像 队列 卵巢癌 化疗 揭穿 肿瘤科 内科学 癌症 放射科
作者
L. Ruilin,Ya‐Hui Yu,Q. Li,Yongtao Tan,Zhongxuan Lin,Herui Yao
出处
期刊:Annals of Oncology [Elsevier]
卷期号:31: S1336-S1336
标识
DOI:10.1016/j.annonc.2020.10.232
摘要

Platinum-sensitivity is an important basis for clinical choice of chemotherapy regimens for recurrent epithelial ovarian cancer (EOC) - without effective methods to predict. We aimed to develop and validate the EOC deep learning system to predict the platinum-sensitive of EOC patients through analysis of enhanced magnetic resonance imaging (MRI) images before initial treatment. Ninety-three EOC patients who received platinum-based chemotherapy (>= 4 cycles) and debulking surgery from Sun Yat-sen Memorial Hospital in China from January 2011 to January 2020 were enrolled. We defined platinum-resistant and platinum-refractory patients as platinum-resistant group, and patients who relapsed 6 months or more after initial platinum-base chemotherapy as platinum-sensitive group. Patients were collected and randomly assigned (2:1) to the training and validation cohorts. A deep learning model-Med3D (Resnet 10 version) was first applied to two MRI sequences (T1+C, T2WI) to automatically extract 1024 features of each patient, then established signatures to predict platinum resistance. The area under curve (AUC) of the whole MRI volume signature yielded was 0.97, 0.98 for the training and validation cohorts, respectively, which was better than that with the primary tumor signature (AUC 0.78 and 0.85 in training and validation cohorts, respectively). The whole MRI volume signature sensitivity was 0.96 in identifying platinum sensitivity in the training cohort, and validated in 0.96(95%CI 0.88-1.0) in the validation cohort. The whole MRI volume signature was superior in sensitivity than with MRI primary tumor signature (0.86 and 0.84 [95% CI 0.70-0.98] in training and validation cohort, respectively). The whole MRI volume signature’s specificity was 0.92 and 1 (95% CI 1.0-1.0) in the training and validation cohorts. The primary tumor MRI signature’s specificity was 0.77 and 0.66 (95% CI 0.28-1.0) in the training and validation cohorts. This deep-learning EOC signature achieved a high predictive power for platinum sensitivity, and the signature based on MRI whole volume is better than that on primary tumor area only.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助chennangua采纳,获得10
3秒前
勤奋的冬萱完成签到,获得积分10
3秒前
江江完成签到 ,获得积分10
6秒前
隐形曼青应助迷你的赛凤采纳,获得10
10秒前
雪儿完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
ymmmaomao23完成签到,获得积分10
15秒前
等待含羞草完成签到 ,获得积分10
16秒前
wang完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
king完成签到 ,获得积分10
18秒前
zhuxd完成签到 ,获得积分10
19秒前
小石头完成签到 ,获得积分10
21秒前
胖胖完成签到 ,获得积分0
26秒前
feihua1完成签到 ,获得积分10
28秒前
LL完成签到 ,获得积分10
28秒前
29秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
8D完成签到,获得积分10
35秒前
blueweier完成签到 ,获得积分10
37秒前
易点邦应助迷你的赛凤采纳,获得10
41秒前
量子星尘发布了新的文献求助10
43秒前
44秒前
jjy完成签到,获得积分10
44秒前
小玲子完成签到 ,获得积分10
45秒前
干净的人达完成签到 ,获得积分10
46秒前
寒冷尔柳完成签到 ,获得积分10
48秒前
cristole完成签到 ,获得积分10
50秒前
湖工大保卫处完成签到,获得积分10
50秒前
NEPUJuly发布了新的文献求助10
50秒前
52秒前
量子星尘发布了新的文献求助10
54秒前
55秒前
58秒前
害羞的天真完成签到 ,获得积分10
58秒前
蔷薇发布了新的文献求助10
58秒前
武雨寒完成签到,获得积分20
1分钟前
南浔完成签到 ,获得积分10
1分钟前
gabee完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936