238O Deep-learning magnetic resonance imaging radiomics predicts platinum-sensitivity in patients with epithelial ovarian cancer

医学 磁共振成像 队列 卵巢癌 化疗 揭穿 肿瘤科 内科学 癌症 放射科
作者
L. Ruilin,Ya‐Hui Yu,Q. Li,Yongtao Tan,Zhongxuan Lin,Herui Yao
出处
期刊:Annals of Oncology [Elsevier BV]
卷期号:31: S1336-S1336
标识
DOI:10.1016/j.annonc.2020.10.232
摘要

Platinum-sensitivity is an important basis for clinical choice of chemotherapy regimens for recurrent epithelial ovarian cancer (EOC) - without effective methods to predict. We aimed to develop and validate the EOC deep learning system to predict the platinum-sensitive of EOC patients through analysis of enhanced magnetic resonance imaging (MRI) images before initial treatment. Ninety-three EOC patients who received platinum-based chemotherapy (>= 4 cycles) and debulking surgery from Sun Yat-sen Memorial Hospital in China from January 2011 to January 2020 were enrolled. We defined platinum-resistant and platinum-refractory patients as platinum-resistant group, and patients who relapsed 6 months or more after initial platinum-base chemotherapy as platinum-sensitive group. Patients were collected and randomly assigned (2:1) to the training and validation cohorts. A deep learning model-Med3D (Resnet 10 version) was first applied to two MRI sequences (T1+C, T2WI) to automatically extract 1024 features of each patient, then established signatures to predict platinum resistance. The area under curve (AUC) of the whole MRI volume signature yielded was 0.97, 0.98 for the training and validation cohorts, respectively, which was better than that with the primary tumor signature (AUC 0.78 and 0.85 in training and validation cohorts, respectively). The whole MRI volume signature sensitivity was 0.96 in identifying platinum sensitivity in the training cohort, and validated in 0.96(95%CI 0.88-1.0) in the validation cohort. The whole MRI volume signature was superior in sensitivity than with MRI primary tumor signature (0.86 and 0.84 [95% CI 0.70-0.98] in training and validation cohort, respectively). The whole MRI volume signature’s specificity was 0.92 and 1 (95% CI 1.0-1.0) in the training and validation cohorts. The primary tumor MRI signature’s specificity was 0.77 and 0.66 (95% CI 0.28-1.0) in the training and validation cohorts. This deep-learning EOC signature achieved a high predictive power for platinum sensitivity, and the signature based on MRI whole volume is better than that on primary tumor area only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助SCI采纳,获得10
1秒前
研友_nvG5bZ发布了新的文献求助10
1秒前
迷人的冰安完成签到,获得积分10
1秒前
Magical完成签到,获得积分10
1秒前
2秒前
清秀的不言完成签到 ,获得积分10
2秒前
Dan_Galaxy完成签到,获得积分10
4秒前
苹果的苹发布了新的文献求助10
6秒前
6秒前
循环bug完成签到,获得积分10
8秒前
10秒前
11秒前
12秒前
WD发布了新的文献求助10
12秒前
故事的小红花完成签到,获得积分10
12秒前
ybheqiang123456完成签到,获得积分10
12秒前
笑点低的彩虹完成签到,获得积分10
14秒前
乐小子完成签到,获得积分10
15秒前
巴巴变发布了新的文献求助10
15秒前
蜡笔小新发布了新的文献求助10
17秒前
陈宏伟完成签到,获得积分10
17秒前
17秒前
17秒前
活泼莫英完成签到,获得积分20
18秒前
19秒前
轩轩发布了新的文献求助10
21秒前
天天开心完成签到 ,获得积分10
22秒前
22秒前
SCI发布了新的文献求助10
22秒前
卡皮巴拉完成签到,获得积分10
22秒前
桐桐应助轩轩采纳,获得10
24秒前
sun_lin完成签到 ,获得积分10
26秒前
27秒前
ti发布了新的文献求助10
27秒前
wanci应助WD采纳,获得10
27秒前
27秒前
SCI关闭了SCI文献求助
29秒前
千跃应助阿朱采纳,获得20
30秒前
31秒前
所所应助小巧的傲松采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975516
求助须知:如何正确求助?哪些是违规求助? 3519930
关于积分的说明 11200130
捐赠科研通 3256278
什么是DOI,文献DOI怎么找? 1798183
邀请新用户注册赠送积分活动 877425
科研通“疑难数据库(出版商)”最低求助积分说明 806320