238O Deep-learning magnetic resonance imaging radiomics predicts platinum-sensitivity in patients with epithelial ovarian cancer

医学 磁共振成像 队列 卵巢癌 化疗 揭穿 肿瘤科 内科学 癌症 放射科
作者
L. Ruilin,Ya‐Hui Yu,Q. Li,Yongtao Tan,Zhongxuan Lin,Herui Yao
出处
期刊:Annals of Oncology [Elsevier]
卷期号:31: S1336-S1336
标识
DOI:10.1016/j.annonc.2020.10.232
摘要

Platinum-sensitivity is an important basis for clinical choice of chemotherapy regimens for recurrent epithelial ovarian cancer (EOC) - without effective methods to predict. We aimed to develop and validate the EOC deep learning system to predict the platinum-sensitive of EOC patients through analysis of enhanced magnetic resonance imaging (MRI) images before initial treatment. Ninety-three EOC patients who received platinum-based chemotherapy (>= 4 cycles) and debulking surgery from Sun Yat-sen Memorial Hospital in China from January 2011 to January 2020 were enrolled. We defined platinum-resistant and platinum-refractory patients as platinum-resistant group, and patients who relapsed 6 months or more after initial platinum-base chemotherapy as platinum-sensitive group. Patients were collected and randomly assigned (2:1) to the training and validation cohorts. A deep learning model-Med3D (Resnet 10 version) was first applied to two MRI sequences (T1+C, T2WI) to automatically extract 1024 features of each patient, then established signatures to predict platinum resistance. The area under curve (AUC) of the whole MRI volume signature yielded was 0.97, 0.98 for the training and validation cohorts, respectively, which was better than that with the primary tumor signature (AUC 0.78 and 0.85 in training and validation cohorts, respectively). The whole MRI volume signature sensitivity was 0.96 in identifying platinum sensitivity in the training cohort, and validated in 0.96(95%CI 0.88-1.0) in the validation cohort. The whole MRI volume signature was superior in sensitivity than with MRI primary tumor signature (0.86 and 0.84 [95% CI 0.70-0.98] in training and validation cohort, respectively). The whole MRI volume signature’s specificity was 0.92 and 1 (95% CI 1.0-1.0) in the training and validation cohorts. The primary tumor MRI signature’s specificity was 0.77 and 0.66 (95% CI 0.28-1.0) in the training and validation cohorts. This deep-learning EOC signature achieved a high predictive power for platinum sensitivity, and the signature based on MRI whole volume is better than that on primary tumor area only.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助Billy采纳,获得10
刚刚
1秒前
1秒前
1秒前
谷粱寒烟完成签到,获得积分10
2秒前
2秒前
霸气雅旋发布了新的文献求助10
2秒前
城南饭饭完成签到,获得积分10
2秒前
2秒前
Reyi完成签到,获得积分10
3秒前
LU发布了新的文献求助10
3秒前
情怀应助无心的迎波采纳,获得10
3秒前
3秒前
4秒前
cream完成签到,获得积分10
4秒前
KDC发布了新的文献求助10
5秒前
勤恳易真发布了新的文献求助10
5秒前
emmm完成签到,获得积分10
5秒前
5秒前
beikeyy发布了新的文献求助20
6秒前
6秒前
YK发布了新的文献求助10
7秒前
7秒前
EdmundLily发布了新的文献求助10
8秒前
KDC完成签到,获得积分10
9秒前
曼曼完成签到,获得积分10
9秒前
霸气雅旋完成签到,获得积分10
10秒前
健忘的灵槐完成签到,获得积分10
10秒前
田123发布了新的文献求助10
10秒前
阻塞阀发布了新的文献求助10
12秒前
林珍完成签到,获得积分10
12秒前
呵呵呵呵呵呵123完成签到,获得积分10
13秒前
xuanxiu007完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
陈军应助chen.采纳,获得20
15秒前
pilifeng完成签到 ,获得积分10
15秒前
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148527
求助须知:如何正确求助?哪些是违规求助? 2799622
关于积分的说明 7836197
捐赠科研通 2457012
什么是DOI,文献DOI怎么找? 1307684
科研通“疑难数据库(出版商)”最低求助积分说明 628247
版权声明 601655