亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Innate and Innate-Like Cells: The Future of Chimeric Antigen Receptor (CAR) Cell Therapy

嵌合抗原受体 先天性淋巴细胞 先天免疫系统 免疫学 生物 医学 免疫疗法 免疫系统
作者
Diana Cortés‐Selva,B. Dasgupta,Sanjaya Singh,Iqbal S. Grewal
出处
期刊:Trends in Pharmacological Sciences [Elsevier]
卷期号:42 (1): 45-59 被引量:45
标识
DOI:10.1016/j.tips.2020.11.004
摘要

Innate and innate-like cells exert potent antitumor effects and present several advantages as platforms for CAR development, especially for the treatment of solid tumors. Innate and innate-like cells offer new opportunities for allogeneic 'off-the-shelf' innate and innate-like CAR-based therapy in the treatment of cancer. Innate and innate-like cells show solid potential as vehicles for CARs, but the reduced survival and durability of these cells may limit their potential in the clinic. Arming innate and innate-like cells with refined next-generation CAR designs and novel gene-editing approaches can help to eliminate the associated roadblocks and permit fine-tuning of antitumor immunity. Conventional αβ CAR-T cell-based approaches have revolutionized the field of cancer immunotherapy, but hurdles remain, especially for solid tumors. Novel strategies in conjunction with alternative cell types are therefore required for effective CAR-based therapies. In this respect, innate and innate-like cells with unique immune properties, such as natural killer (NK) cells, NKT cells, γδ T cells, and macrophages, are promising alternatives to αβ CAR-T adoptive therapy. We review the applicability of these cells in the context of CAR therapy, focusing on therapies under development, the advantages of these approaches relative to conventional CAR-T cells, and their potential in allogeneic therapies. We also discuss the inherent limitations of these cell types and approaches, and outline numerous strategies to overcome the associated obstacles. Conventional αβ CAR-T cell-based approaches have revolutionized the field of cancer immunotherapy, but hurdles remain, especially for solid tumors. Novel strategies in conjunction with alternative cell types are therefore required for effective CAR-based therapies. In this respect, innate and innate-like cells with unique immune properties, such as natural killer (NK) cells, NKT cells, γδ T cells, and macrophages, are promising alternatives to αβ CAR-T adoptive therapy. We review the applicability of these cells in the context of CAR therapy, focusing on therapies under development, the advantages of these approaches relative to conventional CAR-T cells, and their potential in allogeneic therapies. We also discuss the inherent limitations of these cell types and approaches, and outline numerous strategies to overcome the associated obstacles. the donor of transplanted cells or tissues is from the same species but is genetically non-identical. the ability of T cells to recognize peptide–allogeneic MHC complexes (that were not encountered during thymic development) as foreign, thus driving a strong response and subsequent transplant rejection. engineered cells that are often armed with various stimulatory signals that facilitate T cell stimulation, activation, and expansion. the donor of transplanted cells or tissues is the same individual. pluripotent stem cells derived from the blastocyst stage the embryo that have the ability to differentiate and propagate indefinitely in the undifferentiated state. cells derived from a somatic cell source that have been programmed into an embryonic-like pluripotent state. engineered antibodies in which the variable regions of the heavy and light chains of an immunoglobulin are attached together by a short peptide sequence (linker) of ~10–25 amino acids. a molecular structure that is relatively unique to specific tumor cells and is targeted by the CAR single-chain fragment. the environment surrounding a tumor; it comprises heterogeneous cell populations (such as immune cells, blood cells, and stromal cells), signaling factors (e.g., cytokines and chemokines), and other physical components (e.g., extracellular matrix and blood vessels).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁赴湘完成签到 ,获得积分10
9秒前
MchemG应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得10
13秒前
MchemG应助科研通管家采纳,获得10
13秒前
执着艳完成签到 ,获得积分10
18秒前
嘻嘻完成签到,获得积分10
36秒前
seven完成签到,获得积分10
59秒前
seven发布了新的文献求助10
1分钟前
1分钟前
yang发布了新的文献求助10
1分钟前
1分钟前
az发布了新的文献求助10
1分钟前
野性的炳完成签到,获得积分10
1分钟前
1分钟前
1分钟前
九五式自动步枪完成签到,获得积分10
1分钟前
az完成签到 ,获得积分10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Otter完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
优美香露发布了新的文献求助80
3分钟前
3分钟前
丘比特应助学术悍匪采纳,获得10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
林子鸿完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
学术悍匪发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
幽默的绝悟完成签到,获得积分10
4分钟前
4分钟前
acd发布了新的文献求助10
4分钟前
天天快乐应助acd采纳,获得10
5分钟前
x夏天完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658010
求助须知:如何正确求助?哪些是违规求助? 4815993
关于积分的说明 15080791
捐赠科研通 4816301
什么是DOI,文献DOI怎么找? 2577280
邀请新用户注册赠送积分活动 1532288
关于科研通互助平台的介绍 1490890