BinDeep: A deep learning approach to binary code similarity detection

计算机科学 深度学习 人工智能 循环神经网络 编码(集合论) 机器学习 二元分类 相似性(几何) 二进制数 源代码 特征学习 人工神经网络 模式识别(心理学) 支持向量机 数学 算术 集合(抽象数据类型) 图像(数学) 程序设计语言 操作系统
作者
Donghai Tian,Xiaoqi Jia,Rui Ma,Shuke Liu,Wenjing Liu,Changzhen Hu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:168: 114348-114348 被引量:19
标识
DOI:10.1016/j.eswa.2020.114348
摘要

Binary code similarity detection (BCSD) plays an important role in malware analysis and vulnerability discovery. Existing methods mainly rely on the expert’s knowledge for the BCSD, which may not be reliable in some cases. More importantly, the detection accuracy (or performance) of these methods are not so satisfied. To address these issues, we propose BinDeep, a deep learning approach for binary code similarity detection. This method firstly extracts the instruction sequence from the binary function and then uses the instruction embedding model to vectorize the instruction features. Next, BinDeep applies a Recurrent Neural Network (RNN) deep learning model to identify the specific types of two functions for later comparison. According to the type information, BinDeep selects the corresponding deep learning model for similarity comparison. Specifically, BinDeep uses the Siamese neural networks, which combine the LSTM and CNN to measure the similarities of two target functions. Different from the traditional deep learning model, our hybrid model takes advantage of the CNN spatial structure learning and the LSTM sequence learning. The evaluation shows that our approach can achieve good BCSD between cross-architecture, cross-compiler, cross-optimization, and cross-version binary code.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不敢自称科研人完成签到,获得积分10
刚刚
刚刚
快乐寄风发布了新的文献求助10
3秒前
小二郎应助NPC采纳,获得10
3秒前
gone完成签到,获得积分10
4秒前
5秒前
害羞的振家完成签到,获得积分10
5秒前
可悲的科研狗完成签到,获得积分10
6秒前
pcm完成签到 ,获得积分10
6秒前
无花果应助王小敏敏儿采纳,获得10
6秒前
6秒前
所所应助看文献的韩章浅采纳,获得10
7秒前
8秒前
9秒前
nana发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
FashionBoy应助sff采纳,获得10
13秒前
14秒前
15秒前
Qiao发布了新的文献求助10
15秒前
蓝橙完成签到,获得积分10
16秒前
CodeCraft应助qq158014169采纳,获得10
16秒前
小化发布了新的文献求助10
17秒前
领导范儿应助灿灿采纳,获得30
18秒前
Mic应助ning采纳,获得10
18秒前
18秒前
19秒前
无私鹰完成签到,获得积分10
19秒前
充电宝应助nana采纳,获得10
19秒前
19秒前
深情安青应助清脆映梦采纳,获得10
22秒前
23秒前
23秒前
24秒前
25秒前
张张完成签到 ,获得积分10
26秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487