A combinatorial social group whale optimization algorithm for numerical and engineering optimization problems

计算机科学 水准点(测量) 数学优化 标杆管理 威尔科克森符号秩检验 优化测试函数 优化算法 粒子群优化 算法 趋同(经济学) 多群优化 数学 统计 大地测量学 曼惠特尼U检验 营销 经济增长 经济 业务 地理
作者
Aala Kalananda Vamsi Krishna Reddy,Venkata Lakshmi Narayana Komanapalli
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:99: 106903-106903 被引量:48
标识
DOI:10.1016/j.asoc.2020.106903
摘要

This article presents two new hybrid swarm-human based meta-heuristic optimization algorithms benefitting from the synergy of whale optimization algorithm (WOA) and social group optimization (SGO) known as Hybrid Social Whale Optimization Algorithm (HS-WOA and HS-WOA+). HS-WOA and HS-WOA+ are hybridized combining the exploratory capabilities of WOA and convergence capabilities of SGO with a perfect balance between exploration and exploitation. A comparative analysis of the new proposed hybrid algorithm is performed through various benchmark functions. Various test cases to analyze the algorithm's performance like influence of population size, effect of dimensionality, effect of iterative count is performed and compared. The proposed algorithms are compared with modern-meta-heuristics and variants of WOA and SGO to justify its performance. The performance is evaluated statistically through the Wilcoxon's rank-sum test and Friedman's non-parametric test while the convergence curves and acceleration rates are provided to demonstrate the convergence capabilities of the proposed hybrid algorithms and the computational times are recorded to showcase the computational speeds of all the algorithms used in comparison. Composite benchmarking functions are considered to analyze the exploratory prowess and the algorithms' capability to avoid local entrapment. To assess and evaluate the performance of the proposed algorithms with real world optimization tasks, four standard engineering problems with penalty constraints are added to the test bench. Further, a multi-unit production planning problem with correction constraints is deployed through the proposed algorithms. The benchmarking results prove that HS-WOA and HS-WOA+ s' performance is competitive and better than the various algorithms tested against and had a statistically significant performance with lower computational times. The algorithms performed well for both standard engineering problems and the multi-unit production planning problem outperforming the various algorithms in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
沙子发布了新的文献求助10
2秒前
曙光发布了新的文献求助10
3秒前
秋霜发布了新的文献求助10
3秒前
zero桥完成签到,获得积分10
3秒前
小黎快看完成签到,获得积分10
4秒前
田様应助Olivia采纳,获得20
5秒前
跳跃中道发布了新的文献求助10
5秒前
苹果花发布了新的文献求助10
5秒前
大力的野狼完成签到,获得积分10
6秒前
6秒前
6秒前
cxy发布了新的文献求助10
6秒前
yuner发布了新的文献求助10
7秒前
nan完成签到,获得积分20
7秒前
小蘑菇应助称心翠容采纳,获得10
8秒前
大钱完成签到,获得积分20
8秒前
曙光完成签到,获得积分10
9秒前
月啦啦发布了新的文献求助10
10秒前
WUHUDASM发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
温纲发布了新的文献求助10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
大钱发布了新的文献求助10
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
善学以致用应助吴彦祖采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
所所应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490684
求助须知:如何正确求助?哪些是违规求助? 3077465
关于积分的说明 9148997
捐赠科研通 2769686
什么是DOI,文献DOI怎么找? 1519873
邀请新用户注册赠送积分活动 704375
科研通“疑难数据库(出版商)”最低求助积分说明 702135