亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Recurrent CNN for Automatic Detection and Classification of Coronary Artery Plaque and Stenosis in Coronary CT Angiography

医学 冠状动脉 狭窄 动脉 冠状动脉疾病 放射科 卷积神经网络 心脏病学 右冠状动脉 内科学 冠状动脉造影 人工智能 计算机科学 心肌梗塞
作者
Majd Zreik,Robbert W. van Hamersvelt,Jelmer M. Wolterink,Tim Leiner,Max A. Viergever,Ivana Išgum
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:38 (7): 1588-1598 被引量:142
标识
DOI:10.1109/tmi.2018.2883807
摘要

Various types of atherosclerotic plaque and varying grades of stenosis could lead to different management of patients with a coronary artery disease. Therefore, it is crucial to detect and classify the type of coronary artery plaque, as well as to detect and determine the degree of coronary artery stenosis. This paper includes retrospectively collected clinically obtained coronary CT angiography (CCTA) scans of 163 patients. In these, the centerlines of the coronary arteries were extracted and used to reconstruct multi-planar reformatted (MPR) images for the coronary arteries. To define the reference standard, the presence and the type of plaque in the coronary arteries (no plaque, non-calcified, mixed, calcified), as well as the presence and the anatomical significance of coronary stenosis (no stenosis, non-significant, i.e., <50% luminal narrowing, and significant, i.e., ≥50% luminal narrowing) were manually annotated in the MPR images by identifying the start- and end-points of the segment of the artery affected by the plaque. To perform an automatic analysis, a multi-task recurrent convolutional neural network is applied on coronary artery MPR images. First, a 3D convolutional neural network is utilized to extract features along the coronary artery. Subsequently, the extracted features are aggregated by a recurrent neural network that performs two simultaneous multi-class classification tasks. In the first task, the network detects and characterizes the type of the coronary artery plaque. In the second task, the network detects and determines the anatomical significance of the coronary artery stenosis. The network was trained and tested using the CCTA images of 98 and 65 patients, respectively. For detection and characterization of coronary plaque, the method was achieved an accuracy of 0.77. For detection of stenosis and determination of its anatomical significance, the method was achieved an accuracy of 0.80. The results demonstrate that automatic detection and classification of coronary artery plaque and stenosis are feasible. This may enable automated triage of patients to those without coronary plaque and those with coronary plaque and stenosis in need for further cardiovascular workup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
这个手刹不太灵完成签到 ,获得积分10
7秒前
平凡之路发布了新的文献求助10
8秒前
14秒前
11发布了新的文献求助10
20秒前
23秒前
yue发布了新的文献求助10
27秒前
老宇126完成签到,获得积分10
28秒前
平凡之路完成签到,获得积分10
29秒前
充电宝应助11采纳,获得10
36秒前
赘婿应助yue采纳,获得10
1分钟前
科目三应助Aloha采纳,获得10
1分钟前
1分钟前
华仔应助医路有你采纳,获得10
1分钟前
asdfqaz完成签到,获得积分10
1分钟前
1分钟前
Aloha发布了新的文献求助10
1分钟前
科研扫地僧完成签到,获得积分10
1分钟前
丘比特应助科研扫地僧采纳,获得10
1分钟前
1分钟前
医路有你发布了新的文献求助10
1分钟前
南寅完成签到,获得积分10
1分钟前
Hello应助lyz666采纳,获得10
1分钟前
曾经完成签到 ,获得积分10
2分钟前
清净163完成签到,获得积分10
2分钟前
kk完成签到,获得积分10
2分钟前
虚心橘子发布了新的文献求助10
2分钟前
2分钟前
lyz666发布了新的文献求助10
2分钟前
2分钟前
Grace完成签到 ,获得积分10
2分钟前
化学之星发布了新的文献求助10
2分钟前
Dream点壹完成签到,获得积分10
2分钟前
科研通AI5应助yangfan采纳,获得10
2分钟前
领导范儿应助化学之星采纳,获得10
2分钟前
3分钟前
3分钟前
剑八发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
HelloJoey发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526522
求助须知:如何正确求助?哪些是违规求助? 3106959
关于积分的说明 9281959
捐赠科研通 2804471
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709579