Two-Step Imputation and AdaBoost-Based Classification for Early Prediction of Sepsis on Imbalanced Clinical Data

概化理论 医学 败血症 插补(统计学) 公制(单位) 重症监护医学 人工智能 机器学习 缺少数据 统计 内科学 计算机科学 运营管理 数学 经济
作者
Atefeh Baniasadi,Sepideh Rezaeirad,Habil Zare,Mohammad M. Ghassemi
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (1): e91-e97 被引量:17
标识
DOI:10.1097/ccm.0000000000004705
摘要

Sepsis is a life-threatening response to infection that causes tissue damage, organ failure, and death. Effective early prediction of sepsis would improve patients' diagnosis and reduce the cost associated with late-stage sepsis infection by applying appropriate early intervention. However, effective early prediction is challenging because sepsis biomarkers are neither obvious nor definitive, and sepsis datasets are heavily imbalanced against positive diagnosis of sepsis while containing significant missing values. Early prediction of sepsis in ICUs using clinical data is the objective of the PhysioNet/Computing in Cardiology Challenge 2019.In this article, we proposed a machine learning algorithm to aid in the early detection of sepsis.We applied linear interpolation and implemented a sample weighted AdaBoost model to predict sepsis 6 hours before clinical diagnosis.Medical data contains more than 40,000 patients gathered from three geographically distinct U.S. hospital systems that consisted of a combination of hourly vital sign, lab values, and static patient descriptions.The challenge metric, however, did not directly reward models for their generalizability across institutions.The article is evaluated using a new metric called Utility Score that is defined as Official scoring criteria. Our approach was among the top 10% of entries to the Challenge on a hidden test set.Herein, we demonstrate that our proposed approach was the most effective of the Challenge entrants when such generalizability is explicitly accounted for in model evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenjingjing114完成签到,获得积分20
3秒前
CipherSage应助陶军辉采纳,获得10
3秒前
6秒前
发酒疯很方便吃完成签到,获得积分10
7秒前
汉堡包应助Creamai采纳,获得10
11秒前
13秒前
QYW发布了新的文献求助10
13秒前
哆啦A梦完成签到,获得积分10
14秒前
顺利的曼寒完成签到 ,获得积分10
15秒前
cc完成签到,获得积分20
15秒前
爆米花应助小米粥采纳,获得10
16秒前
派大星完成签到 ,获得积分10
17秒前
许可发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
infj完成签到,获得积分10
20秒前
22秒前
raoxray发布了新的文献求助10
23秒前
bkagyin应助聪明的宛菡采纳,获得10
24秒前
howl发布了新的文献求助10
26秒前
柔弱云朵完成签到 ,获得积分10
26秒前
27秒前
cc发布了新的文献求助10
28秒前
科目三应助tidongzhiwu采纳,获得10
29秒前
29秒前
30秒前
细腻天蓝发布了新的文献求助10
30秒前
刚刚发布了新的文献求助10
31秒前
luoqin发布了新的文献求助10
33秒前
一米完成签到,获得积分10
36秒前
abner发布了新的文献求助10
36秒前
飞飞完成签到,获得积分10
36秒前
CipherSage应助Ahha采纳,获得10
36秒前
赵丽娟完成签到,获得积分10
37秒前
希望天下0贩的0应助Shanshan采纳,获得10
37秒前
小刘完成签到,获得积分10
38秒前
38秒前
昭奚完成签到 ,获得积分10
39秒前
Akim应助鳗鱼凡旋采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023