Two-Step Imputation and AdaBoost-Based Classification for Early Prediction of Sepsis on Imbalanced Clinical Data

概化理论 医学 败血症 插补(统计学) 公制(单位) 重症监护医学 人工智能 机器学习 缺少数据 统计 内科学 计算机科学 运营管理 数学 经济
作者
Atefeh Baniasadi,Sepideh Rezaeirad,Habil Zare,Mohammad M. Ghassemi
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (1): e91-e97 被引量:22
标识
DOI:10.1097/ccm.0000000000004705
摘要

Sepsis is a life-threatening response to infection that causes tissue damage, organ failure, and death. Effective early prediction of sepsis would improve patients' diagnosis and reduce the cost associated with late-stage sepsis infection by applying appropriate early intervention. However, effective early prediction is challenging because sepsis biomarkers are neither obvious nor definitive, and sepsis datasets are heavily imbalanced against positive diagnosis of sepsis while containing significant missing values. Early prediction of sepsis in ICUs using clinical data is the objective of the PhysioNet/Computing in Cardiology Challenge 2019.In this article, we proposed a machine learning algorithm to aid in the early detection of sepsis.We applied linear interpolation and implemented a sample weighted AdaBoost model to predict sepsis 6 hours before clinical diagnosis.Medical data contains more than 40,000 patients gathered from three geographically distinct U.S. hospital systems that consisted of a combination of hourly vital sign, lab values, and static patient descriptions.The challenge metric, however, did not directly reward models for their generalizability across institutions.The article is evaluated using a new metric called Utility Score that is defined as Official scoring criteria. Our approach was among the top 10% of entries to the Challenge on a hidden test set.Herein, we demonstrate that our proposed approach was the most effective of the Challenge entrants when such generalizability is explicitly accounted for in model evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xy发布了新的文献求助10
1秒前
1秒前
伶俐的星月完成签到,获得积分10
2秒前
小二郎应助Horizon采纳,获得10
2秒前
2秒前
lzx完成签到,获得积分10
3秒前
3秒前
小蘑菇应助若米采纳,获得10
3秒前
Georges-09完成签到,获得积分10
4秒前
小马甲应助实验顺利采纳,获得10
4秒前
吴迪发布了新的文献求助10
4秒前
雁过留声完成签到,获得积分10
4秒前
5秒前
brouf完成签到 ,获得积分10
5秒前
个性的荆发布了新的文献求助10
6秒前
llf应助独特的追命采纳,获得20
6秒前
7秒前
满意语芙发布了新的文献求助10
8秒前
9秒前
9秒前
豆豆完成签到,获得积分10
9秒前
wang5945发布了新的文献求助10
10秒前
颖123发布了新的文献求助30
10秒前
apong发布了新的文献求助10
11秒前
11秒前
zzr完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
渡月桥完成签到,获得积分10
13秒前
田大明发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
16秒前
YYL发布了新的文献求助10
16秒前
xiajiahao完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901