Two-Step Imputation and AdaBoost-Based Classification for Early Prediction of Sepsis on Imbalanced Clinical Data

概化理论 医学 败血症 插补(统计学) 公制(单位) 重症监护医学 人工智能 机器学习 缺少数据 统计 内科学 计算机科学 运营管理 数学 经济
作者
Atefeh Baniasadi,Sepideh Rezaeirad,Habil Zare,Mohammad M. Ghassemi
出处
期刊:Critical Care Medicine [Ovid Technologies (Wolters Kluwer)]
卷期号:49 (1): e91-e97 被引量:22
标识
DOI:10.1097/ccm.0000000000004705
摘要

Sepsis is a life-threatening response to infection that causes tissue damage, organ failure, and death. Effective early prediction of sepsis would improve patients' diagnosis and reduce the cost associated with late-stage sepsis infection by applying appropriate early intervention. However, effective early prediction is challenging because sepsis biomarkers are neither obvious nor definitive, and sepsis datasets are heavily imbalanced against positive diagnosis of sepsis while containing significant missing values. Early prediction of sepsis in ICUs using clinical data is the objective of the PhysioNet/Computing in Cardiology Challenge 2019.In this article, we proposed a machine learning algorithm to aid in the early detection of sepsis.We applied linear interpolation and implemented a sample weighted AdaBoost model to predict sepsis 6 hours before clinical diagnosis.Medical data contains more than 40,000 patients gathered from three geographically distinct U.S. hospital systems that consisted of a combination of hourly vital sign, lab values, and static patient descriptions.The challenge metric, however, did not directly reward models for their generalizability across institutions.The article is evaluated using a new metric called Utility Score that is defined as Official scoring criteria. Our approach was among the top 10% of entries to the Challenge on a hidden test set.Herein, we demonstrate that our proposed approach was the most effective of the Challenge entrants when such generalizability is explicitly accounted for in model evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助小狗呼噜噜采纳,获得10
刚刚
ranjeah完成签到 ,获得积分10
1秒前
1秒前
1秒前
Heart完成签到,获得积分20
1秒前
2秒前
无花果应助桂花酒酿采纳,获得30
3秒前
3秒前
nikki完成签到,获得积分10
4秒前
4秒前
5秒前
gouzi发布了新的文献求助10
7秒前
7秒前
Rikki发布了新的文献求助10
7秒前
7秒前
佳音完成签到,获得积分20
8秒前
8秒前
8秒前
8秒前
8秒前
学术智子完成签到,获得积分10
8秒前
共享精神应助cdytjt采纳,获得10
8秒前
9秒前
9秒前
Thi发布了新的文献求助10
9秒前
10秒前
VDC应助LUJU采纳,获得30
10秒前
游一发布了新的文献求助10
10秒前
舟夏完成签到 ,获得积分10
10秒前
billyin发布了新的文献求助10
11秒前
11秒前
了一李应助qs采纳,获得10
11秒前
共享精神应助何必在乎采纳,获得10
12秒前
顺利的夜梦完成签到,获得积分10
12秒前
想跟这个世界讲个道理完成签到,获得积分10
12秒前
zwyingg完成签到,获得积分10
12秒前
Mental发布了新的文献求助10
13秒前
tracy发布了新的文献求助10
13秒前
14秒前
领导范儿应助欢喜的毛豆采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382