Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks

卷积神经网络 计算机科学 树(集合论) 遥感 RGB颜色模型 植被(病理学) 人工智能 数字高程模型 图像分辨率 航空影像 温带雨林 分割 深度学习 模式识别(心理学) 地理 图像(数学) 生态学 数学 病理 数学分析 生态系统 生物 医学
作者
Felix Schiefer,Teja Kattenborn,Annett Frick,Julian Frey,Peter Schall,Barbara Koch,Sebastian Schmidtlein
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:170: 205-215 被引量:238
标识
DOI:10.1016/j.isprsjprs.2020.10.015
摘要

The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that concurrently segments and classifies tree species from imagery. With a diverse dataset in terms of study areas, site conditions, illumination properties, and phenology, we accurately mapped nine tree species, three genus-level classes, deadwood, and forest floor (mean F1-score 0.73). A larger tile size during CNN training negatively affected the model accuracies for underrepresented classes. Additional height information from normalized digital surface models slightly increased the model accuracy but increased computational complexity and data requirements. A coarser spatial resolution substantially reduced the model accuracy (mean F1-score of 0.26 at 32 cm resolution). Our results highlight the key role that UAVs can play in the mapping of forest tree species, given that air- and spaceborne remote sensing currently does not provide comparable spatial resolutions. The end-to-end learning capability of CNNs makes extensive preprocessing partly obsolete. The use of large and diverse datasets facilitate a high degree of generalization of the CNN, thus fostering transferability. The synergy of high-resolution UAV imagery and CNN provide a fast and flexible yet accurate means of mapping forest tree species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赵发布了新的文献求助10
刚刚
刚刚
黄雪峰发布了新的文献求助10
1秒前
桐桐应助vn采纳,获得10
2秒前
remedy完成签到 ,获得积分10
2秒前
英俊的铭应助杨甜心采纳,获得10
4秒前
无何不可完成签到 ,获得积分10
4秒前
LY应助阿桂采纳,获得10
4秒前
这么年轻压根睡不着完成签到 ,获得积分10
6秒前
8秒前
情怀应助圆圆的馒头采纳,获得10
8秒前
10秒前
10秒前
jackish完成签到,获得积分10
12秒前
不倦应助风中晓露采纳,获得10
12秒前
13秒前
vn发布了新的文献求助10
13秒前
14秒前
15秒前
晚霞不晚发布了新的文献求助10
15秒前
牛肉汉堡完成签到,获得积分10
15秒前
科研通AI2S应助xiaixax采纳,获得10
16秒前
水三寿发布了新的文献求助10
16秒前
16秒前
小杰完成签到 ,获得积分10
16秒前
潇洒的夜云完成签到,获得积分10
16秒前
包容雨双完成签到,获得积分10
17秒前
17秒前
17秒前
君寻完成签到 ,获得积分10
18秒前
19秒前
wxgstc1发布了新的文献求助10
19秒前
20秒前
泥泥发布了新的文献求助10
20秒前
20秒前
ding应助科研通管家采纳,获得10
21秒前
不配.应助科研通管家采纳,获得10
21秒前
21秒前
调研昵称发布了新的文献求助10
21秒前
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242966
求助须知:如何正确求助?哪些是违规求助? 2887078
关于积分的说明 8246239
捐赠科研通 2555661
什么是DOI,文献DOI怎么找? 1383762
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625625