Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks

卷积神经网络 计算机科学 树(集合论) 遥感 RGB颜色模型 植被(病理学) 人工智能 数字高程模型 图像分辨率 航空影像 温带雨林 分割 深度学习 模式识别(心理学) 地理 图像(数学) 生态学 数学 病理 数学分析 生态系统 生物 医学
作者
Felix Schiefer,Teja Kattenborn,Annett Frick,Julian Frey,Peter Schall,Barbara Koch,Sebastian Schmidtlein
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:170: 205-215 被引量:254
标识
DOI:10.1016/j.isprsjprs.2020.10.015
摘要

The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that concurrently segments and classifies tree species from imagery. With a diverse dataset in terms of study areas, site conditions, illumination properties, and phenology, we accurately mapped nine tree species, three genus-level classes, deadwood, and forest floor (mean F1-score 0.73). A larger tile size during CNN training negatively affected the model accuracies for underrepresented classes. Additional height information from normalized digital surface models slightly increased the model accuracy but increased computational complexity and data requirements. A coarser spatial resolution substantially reduced the model accuracy (mean F1-score of 0.26 at 32 cm resolution). Our results highlight the key role that UAVs can play in the mapping of forest tree species, given that air- and spaceborne remote sensing currently does not provide comparable spatial resolutions. The end-to-end learning capability of CNNs makes extensive preprocessing partly obsolete. The use of large and diverse datasets facilitate a high degree of generalization of the CNN, thus fostering transferability. The synergy of high-resolution UAV imagery and CNN provide a fast and flexible yet accurate means of mapping forest tree species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
12we完成签到 ,获得积分10
2秒前
lmq关闭了lmq文献求助
3秒前
3秒前
py应助DJ采纳,获得10
4秒前
岩下松风发布了新的文献求助10
4秒前
4秒前
小丸子发布了新的文献求助10
5秒前
传奇3应助灵巧大地采纳,获得10
7秒前
韩涵发布了新的文献求助10
7秒前
所所应助一直小虾米采纳,获得10
9秒前
Yummy发布了新的文献求助10
9秒前
9秒前
Hello应助纯真的伟诚采纳,获得10
9秒前
9秒前
9秒前
yuisl完成签到,获得积分10
12秒前
12秒前
13秒前
大华完成签到,获得积分10
15秒前
15秒前
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
skoch完成签到 ,获得积分10
17秒前
11应助科研通管家采纳,获得10
17秒前
dong应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得30
17秒前
聪慧小霜应助科研通管家采纳,获得10
17秒前
聪慧小霜应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
领导范儿应助1234采纳,获得10
18秒前
LI发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
Local and systemic effects of topical betulinic acid in a psoriasis-like inflammation model in mice 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980408
求助须知:如何正确求助?哪些是违规求助? 3524319
关于积分的说明 11220990
捐赠科研通 3261764
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879424
科研通“疑难数据库(出版商)”最低求助积分说明 807261