Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks

卷积神经网络 计算机科学 树(集合论) 遥感 RGB颜色模型 植被(病理学) 人工智能 数字高程模型 图像分辨率 航空影像 温带雨林 分割 深度学习 模式识别(心理学) 地理 图像(数学) 生态学 数学 病理 数学分析 生态系统 生物 医学
作者
Felix Schiefer,Teja Kattenborn,Annett Frick,Julian Frey,Peter Schall,Barbara Koch,Sebastian Schmidtlein
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:170: 205-215 被引量:254
标识
DOI:10.1016/j.isprsjprs.2020.10.015
摘要

The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that concurrently segments and classifies tree species from imagery. With a diverse dataset in terms of study areas, site conditions, illumination properties, and phenology, we accurately mapped nine tree species, three genus-level classes, deadwood, and forest floor (mean F1-score 0.73). A larger tile size during CNN training negatively affected the model accuracies for underrepresented classes. Additional height information from normalized digital surface models slightly increased the model accuracy but increased computational complexity and data requirements. A coarser spatial resolution substantially reduced the model accuracy (mean F1-score of 0.26 at 32 cm resolution). Our results highlight the key role that UAVs can play in the mapping of forest tree species, given that air- and spaceborne remote sensing currently does not provide comparable spatial resolutions. The end-to-end learning capability of CNNs makes extensive preprocessing partly obsolete. The use of large and diverse datasets facilitate a high degree of generalization of the CNN, thus fostering transferability. The synergy of high-resolution UAV imagery and CNN provide a fast and flexible yet accurate means of mapping forest tree species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助Leeyouyou采纳,获得10
刚刚
青雉完成签到,获得积分10
刚刚
wangxiangqin完成签到,获得积分10
1秒前
小罗萝卜完成签到,获得积分10
1秒前
JamesPei应助阿拉采纳,获得10
1秒前
2秒前
隐形曼青应助carl采纳,获得10
2秒前
wipmzxu发布了新的文献求助10
2秒前
2秒前
2秒前
在水一方应助王荷一采纳,获得10
3秒前
科目三应助lizhaonian采纳,获得10
4秒前
4秒前
小明给小明的求助进行了留言
4秒前
pluto应助Wunier61采纳,获得10
5秒前
279完成签到,获得积分10
5秒前
缥缈襄发布了新的文献求助10
5秒前
pluto应助fcyyc采纳,获得10
5秒前
5秒前
大个应助一一采纳,获得10
5秒前
文静的颖完成签到,获得积分10
5秒前
wangxiangqin发布了新的文献求助10
5秒前
洁净的鹰关注了科研通微信公众号
6秒前
爱学习的椰子完成签到 ,获得积分10
6秒前
邢晓彤完成签到 ,获得积分10
6秒前
研友_8y2G0L发布了新的文献求助20
7秒前
7秒前
直率的之桃完成签到,获得积分10
7秒前
水电站完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
YE完成签到,获得积分10
8秒前
8秒前
9秒前
Shrimp发布了新的文献求助15
9秒前
疯狂77完成签到 ,获得积分10
9秒前
简单的思松完成签到,获得积分10
9秒前
duna完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472789
求助须知:如何正确求助?哪些是违规求助? 4575000
关于积分的说明 14349787
捐赠科研通 4502378
什么是DOI,文献DOI怎么找? 2467070
邀请新用户注册赠送积分活动 1455052
关于科研通互助平台的介绍 1429246