Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks

卷积神经网络 计算机科学 树(集合论) 遥感 RGB颜色模型 植被(病理学) 人工智能 数字高程模型 图像分辨率 航空影像 温带雨林 分割 深度学习 模式识别(心理学) 地理 图像(数学) 生态学 数学 病理 数学分析 生态系统 生物 医学
作者
Felix Schiefer,Teja Kattenborn,Annett Frick,Julian Frey,Peter Schall,Barbara Koch,Sebastian Schmidtlein
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:170: 205-215 被引量:254
标识
DOI:10.1016/j.isprsjprs.2020.10.015
摘要

The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution (<2 cm) RGB imagery over 51 ha of temperate forests in the Southern Black Forest region, and the Hainich National Park in Germany. To fully harness the end-to-end learning capabilities of CNNs, we used a semantic segmentation approach (U-net) that concurrently segments and classifies tree species from imagery. With a diverse dataset in terms of study areas, site conditions, illumination properties, and phenology, we accurately mapped nine tree species, three genus-level classes, deadwood, and forest floor (mean F1-score 0.73). A larger tile size during CNN training negatively affected the model accuracies for underrepresented classes. Additional height information from normalized digital surface models slightly increased the model accuracy but increased computational complexity and data requirements. A coarser spatial resolution substantially reduced the model accuracy (mean F1-score of 0.26 at 32 cm resolution). Our results highlight the key role that UAVs can play in the mapping of forest tree species, given that air- and spaceborne remote sensing currently does not provide comparable spatial resolutions. The end-to-end learning capability of CNNs makes extensive preprocessing partly obsolete. The use of large and diverse datasets facilitate a high degree of generalization of the CNN, thus fostering transferability. The synergy of high-resolution UAV imagery and CNN provide a fast and flexible yet accurate means of mapping forest tree species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qiqi完成签到,获得积分10
刚刚
刚刚
文青完成签到,获得积分20
刚刚
CodeCraft应助tianmafei采纳,获得10
刚刚
农夫三拳发布了新的文献求助10
刚刚
刚刚
刚刚
Jasper应助mini小萝卜采纳,获得10
1秒前
2秒前
小蘑菇应助老迟到的涑采纳,获得10
3秒前
可爱夜白发布了新的文献求助10
3秒前
3秒前
冬天完成签到,获得积分20
3秒前
卢西奥发布了新的文献求助10
3秒前
12233发布了新的文献求助10
3秒前
1111应助灯灯采纳,获得10
4秒前
研友_LOq3VZ发布了新的文献求助10
4秒前
4秒前
隐形曼青应助尊敬跳跳糖采纳,获得10
4秒前
顺利汉堡完成签到 ,获得积分10
4秒前
酸梅发布了新的文献求助10
4秒前
单纯的问夏关注了科研通微信公众号
4秒前
曹志毅发布了新的文献求助10
4秒前
三石呦423完成签到,获得积分10
5秒前
爱喝可乐发布了新的文献求助10
5秒前
5秒前
5秒前
彭彭发布了新的文献求助30
5秒前
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
6秒前
6秒前
zhong完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625211
求助须知:如何正确求助?哪些是违规求助? 4711023
关于积分的说明 14953724
捐赠科研通 4779110
什么是DOI,文献DOI怎么找? 2553631
邀请新用户注册赠送积分活动 1515569
关于科研通互助平台的介绍 1475801