Automated Liver Fat Quantification at Nonenhanced Abdominal CT for Population-based Steatosis Assessment

医学 霍恩斯菲尔德秤 脂肪变性 非酒精性脂肪肝 体质指数 无症状的 核医学 放射科 脂肪肝 人口 腹部 计算机断层摄影术 内科学 疾病 环境卫生
作者
Peter M Graffy,Veit Sandfort,Ronald M. Summers,Perry J. Pickhardt
出处
期刊:Radiology [Radiological Society of North America]
卷期号:293 (2): 334-342 被引量:87
标识
DOI:10.1148/radiol.2019190512
摘要

Background Nonalcoholic fatty liver disease and its consequences are a growing public health concern requiring cross-sectional imaging for noninvasive diagnosis and quantification of liver fat. Purpose To investigate a deep learning–based automated liver fat quantification tool at nonenhanced CT for establishing the prevalence of steatosis in a large screening cohort. Materials and Methods In this retrospective study, a fully automated liver segmentation algorithm was applied to noncontrast abdominal CT examinations from consecutive asymptomatic adults by using three-dimensional convolutional neural networks, including a subcohort with follow-up scans. Automated volume-based liver attenuation was analyzed, including conversion to CT fat fraction, and compared with manual measurement in a large subset of scans. Results A total of 11 669 CT scans in 9552 adults (mean age ± standard deviation, 57.2 years ± 7.9; 5314 women and 4238 men; median body mass index [BMI], 27.8 kg/m2) were evaluated, including 2117 follow-up scans in 1862 adults (mean age, 59.2 years; 971 women and 891 men; mean interval, 5.5 years). Algorithm failure occurred in seven scans. Mean CT liver attenuation was 55 HU ± 10, corresponding to CT fat fraction of 6.4% (slightly fattier in men than in women [7.4% ± 6.0 vs 5.8% ± 5.7%; P < .001]). Mean liver Hounsfield unit varied little by age (<4 HU difference among all age groups) and only weak correlation was seen with BMI (r2 = 0.14). By category, 47.9% (5584 of 11 669) had negligible or no liver fat (CT fat fraction <5%), 42.4% (4948 of 11 669) had mild steatosis (CT fat fraction of 5%–14%), 8.8% (1025 of 11 669) had moderate steatosis (CT fat fraction of 14%–28%), and 1% (112 of 11 669) had severe steatosis (CT fat fraction >28%). Excellent agreement was seen between automated and manual measurements, with a mean difference of 2.7 HU (median, 3 HU) and r2 of 0.92. Among the subcohort with longitudinal follow-up, mean change was only −3 HU ± 9, but 43.3% (806 of 1861) of patients changed steatosis category between first and last scans. Conclusion This fully automated CT-based liver fat quantification tool allows for population-based assessment of hepatic steatosis and nonalcoholic fatty liver disease, with objective data that match well with manual measurement. The prevalence of at least mild steatosis was greater than 50% in this asymptomatic screening cohort. © RSNA, 2019
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲奇饼干完成签到,获得积分10
1秒前
xiaobai完成签到,获得积分10
2秒前
muyi完成签到,获得积分10
2秒前
开放菀完成签到 ,获得积分10
2秒前
火火应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
哎嘿应助科研通管家采纳,获得10
4秒前
火火应助科研通管家采纳,获得10
4秒前
SciGPT应助白河采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
5秒前
lllyq完成签到,获得积分10
5秒前
唐唐完成签到 ,获得积分10
6秒前
月球上的人完成签到,获得积分10
7秒前
James完成签到,获得积分10
8秒前
希望天下0贩的0应助JoaquinH采纳,获得10
8秒前
Mario完成签到,获得积分10
8秒前
10秒前
朝阳CAAS完成签到,获得积分10
11秒前
GEYUAN完成签到 ,获得积分10
11秒前
11秒前
科研通AI2S应助11采纳,获得10
12秒前
13秒前
14秒前
16秒前
NexusExplorer应助CIBww采纳,获得10
17秒前
等豆宝儿完成签到,获得积分10
17秒前
17秒前
tianzml0应助Mario采纳,获得10
17秒前
华仔应助八百标兵采纳,获得10
19秒前
贝拉发布了新的文献求助10
21秒前
21秒前
烟花应助刻苦的雁荷采纳,获得10
22秒前
LGH完成签到 ,获得积分10
22秒前
FANGQUAN完成签到 ,获得积分10
22秒前
22秒前
隐形曼青应助WHY采纳,获得10
23秒前
麻溜儿完成签到,获得积分20
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159909
求助须知:如何正确求助?哪些是违规求助? 2810952
关于积分的说明 7890034
捐赠科研通 2469969
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630771
版权声明 602012