Achieving ultrahigh-energy-density in flexible and lightweight all-solid-state internal asymmetric tandem 6.6 V all-in-one supercapacitors

材料科学 串联 超级电容器 阳极 碳纳米管 阴极 储能 电极 纳米技术 光电子学 功率(物理) 复合材料 电容 电气工程 物理化学 工程类 化学 物理 量子力学
作者
Zhenyu Zhou,Qiulong Li,Liqian Yuan,Lei Tang,Xiaona Wang,Bing He,Ping Man,Chaowei Li,Liyan Xie,Weibang Lu,Lei Wei,Qichong Zhang,Yagang Yao
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:25: 893-902 被引量:28
标识
DOI:10.1016/j.ensm.2019.09.002
摘要

Internal asymmetric tandem supercapacitors with wide working voltage have drawn an increasing attention to develop high-energy-density supercapacitors. However, the small specific capacitance and low working voltage of single-supercapacitor restrict further improvement of their energy density. A rational solution to this restriction would be to synthesize high-performance electrode materials. Accordingly, this work specifies a simple and cost-effective method to directly grow manganese dioxide and vanadium nitrogen nanosheets on zeolitic imidazolate framework-67 derived N-doped carbon conductive skeletons. These well-designed core-shell pseudocapacitive materials integrate the features of large specific surface area, rich reaction sites, high mass loading, short electron/ion diffusion paths and remarkable conductivity, affording prominent electrochemical performance. Furthermore, a flexible all-solid-state internal asymmetric tandem 6.6 V all-in-one supercapacitor was successfully assembled by matching as-fabricated cathode and anode materials as well as using carbon nanotube film as a lightweight current collector. The resulting all-in-one devices exhibited a high specific capacitance of 336.7 mF/cm2 (19.6 F/cm3) and an exceptional energy density of 2032.8 μWh/cm2 (118.2 mWh/cm3) and thus substantially outperform most previously reported state-of-the-art asymmetric supercapacitors. Our work provides a promising strategy for the rational construction of high-performance, inexpensive and safe all-in-one supercapacitors for next-generation portable and wearable electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助西门博超采纳,获得10
1秒前
1秒前
ptjam完成签到,获得积分10
3秒前
皮皮鲁完成签到,获得积分10
3秒前
方方完成签到 ,获得积分10
7秒前
科研通AI2S应助我爱读文献采纳,获得10
7秒前
8秒前
9秒前
komorebi完成签到,获得积分10
11秒前
11秒前
Kidult完成签到 ,获得积分10
11秒前
13秒前
快乐小狗发布了新的文献求助10
14秒前
15秒前
飘逸宫苴发布了新的文献求助10
16秒前
田様应助寒烟采纳,获得10
16秒前
问你有没有发挥完成签到,获得积分10
17秒前
18秒前
komorebi发布了新的文献求助10
18秒前
18秒前
liyuanyuan发布了新的文献求助10
21秒前
JamesPei应助明朗采纳,获得10
22秒前
pharmstudent发布了新的文献求助10
22秒前
23秒前
所所应助拼搏向上采纳,获得10
23秒前
丘比特应助熊猫宝宝采纳,获得10
26秒前
NexusExplorer应助谦让的语儿采纳,获得10
29秒前
weiyongswust应助舟舟采纳,获得20
30秒前
Owen应助快乐小狗采纳,获得10
31秒前
Singularity应助拼搏向上采纳,获得10
32秒前
gege完成签到,获得积分10
34秒前
36秒前
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
SciGPT应助科研通管家采纳,获得10
38秒前
Jasper应助科研通管家采纳,获得10
38秒前
大模型应助科研通管家采纳,获得20
38秒前
深情安青应助科研通管家采纳,获得30
38秒前
蔚欢完成签到 ,获得积分10
38秒前
高分求助中
LNG地下式貯槽指針(JGA指-107-19)(Recommended practice for LNG inground storage) 1000
rhetoric, logic and argumentation: a guide to student writers 1000
QMS18Ed2 | process management. 2nd ed 1000
Eric Dunning and the Sociology of Sport 850
Operative Techniques in Pediatric Orthopaedic Surgery 510
A High Efficiency Grating Coupler Based on Hybrid Si-Lithium Niobate on Insulator Platform 500
Generalized Linear Mixed Models 第二版 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2921295
求助须知:如何正确求助?哪些是违规求助? 2563861
关于积分的说明 6934945
捐赠科研通 2221572
什么是DOI,文献DOI怎么找? 1180909
版权声明 588787
科研通“疑难数据库(出版商)”最低求助积分说明 577751