Unsupervised Large Graph Embedding Based on Balanced and Hierarchical K-means

符号 数学 降维 嵌入 基质(化学分析) 图形 组合数学 离散数学 计算机科学 人工智能 算术 复合材料 材料科学
作者
Feiping Nie,Wei Zhu,Xuelong Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:27
标识
DOI:10.1109/tkde.2020.3000226
摘要

There are many successful spectral based unsupervised dimensionality reduction methods, including Laplacian Eigenmap (LE), Locality Preserving Projection (LPP), Spectral Regression (SR), etc. We find that LPP and SR are equivalent if the symmetric similarity matrix is doubly stochastic, Positive Semi-Definite (PSD) and with rank $p$ , where $p$ is the reduced dimension. Since solving SR is believed faster than solving LPP based on some related literature, the discovery promotes us to seek to construct such specific similarity matrix to speed up LPP solving procedures. We then propose an unsupervised linear method called Unsupervised Large Graph Embedding (ULGE). ULGE starts with a similar idea as LPP but adopts an efficient approach to construct anchor-based similarity matrix and then performs spectral analysis on it. Moreover, since conventional anchor generation strategies suffer kinds of problems, we propose an efficient and effective anchor generation strategy, called Balanced $K$ -means based Hierarchical $K$ -means (BHKH). The computational complexity of ULGE can reduce to $O(ndm)$ , which is a significant improvement compared to conventional methods need $O(n^2d)$ at least, where $n$ , $d$ and $m$ are the number of samples, dimensions, and anchors, respectively. Extensive experiments on several publicly available datasets demonstrate the efficiency and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得100
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
1秒前
lalala应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
chenqiumu应助科研通管家采纳,获得30
1秒前
淡定猎豹发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
2秒前
lalala应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
6666发布了新的文献求助10
2秒前
慕青应助Painkiller_采纳,获得10
3秒前
龙龙冲发布了新的文献求助20
5秒前
养狗了没有完成签到 ,获得积分10
5秒前
小鱼儿发布了新的文献求助10
6秒前
肥猫发布了新的文献求助30
7秒前
懦弱的博涛给懦弱的博涛的求助进行了留言
9秒前
酷波er应助xiao采纳,获得10
9秒前
精明板栗完成签到,获得积分10
10秒前
蒋鹏煊完成签到,获得积分10
11秒前
12秒前
13秒前
CodeCraft应助Painkiller_采纳,获得10
17秒前
Hua完成签到,获得积分10
18秒前
ppp完成签到,获得积分10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400