亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised Large Graph Embedding Based on Balanced and Hierarchical K-means

符号 数学 降维 嵌入 基质(化学分析) 图形 组合数学 离散数学 计算机科学 人工智能 算术 复合材料 材料科学
作者
Feiping Nie,Wei Zhu,Xuelong Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:27
标识
DOI:10.1109/tkde.2020.3000226
摘要

There are many successful spectral based unsupervised dimensionality reduction methods, including Laplacian Eigenmap (LE), Locality Preserving Projection (LPP), Spectral Regression (SR), etc. We find that LPP and SR are equivalent if the symmetric similarity matrix is doubly stochastic, Positive Semi-Definite (PSD) and with rank $p$ , where $p$ is the reduced dimension. Since solving SR is believed faster than solving LPP based on some related literature, the discovery promotes us to seek to construct such specific similarity matrix to speed up LPP solving procedures. We then propose an unsupervised linear method called Unsupervised Large Graph Embedding (ULGE). ULGE starts with a similar idea as LPP but adopts an efficient approach to construct anchor-based similarity matrix and then performs spectral analysis on it. Moreover, since conventional anchor generation strategies suffer kinds of problems, we propose an efficient and effective anchor generation strategy, called Balanced $K$ -means based Hierarchical $K$ -means (BHKH). The computational complexity of ULGE can reduce to $O(ndm)$ , which is a significant improvement compared to conventional methods need $O(n^2d)$ at least, where $n$ , $d$ and $m$ are the number of samples, dimensions, and anchors, respectively. Extensive experiments on several publicly available datasets demonstrate the efficiency and effectiveness of the proposed method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
29秒前
33秒前
潮鸣完成签到 ,获得积分10
34秒前
Li发布了新的文献求助10
37秒前
37秒前
40秒前
巫马百招完成签到,获得积分10
44秒前
lyw发布了新的文献求助10
46秒前
wanci应助Fortune采纳,获得10
47秒前
fossick2010完成签到 ,获得积分10
1分钟前
Penny完成签到,获得积分10
1分钟前
1分钟前
Penny发布了新的文献求助10
1分钟前
andrele发布了新的文献求助50
1分钟前
Fortune发布了新的文献求助10
1分钟前
颜安完成签到,获得积分20
1分钟前
张张完成签到 ,获得积分10
1分钟前
1分钟前
Fortune完成签到,获得积分10
1分钟前
Vincent发布了新的文献求助10
1分钟前
爆米花应助lzmcsp采纳,获得10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
Vincent完成签到,获得积分10
2分钟前
蓝色牛马完成签到,获得积分10
2分钟前
xuzb发布了新的文献求助10
2分钟前
搜集达人应助蓝色牛马采纳,获得10
2分钟前
2分钟前
lzmcsp发布了新的文献求助10
2分钟前
2分钟前
lyw发布了新的文献求助10
2分钟前
lzmcsp完成签到,获得积分10
2分钟前
andrele发布了新的文献求助200
2分钟前
3分钟前
颜安发布了新的文献求助10
3分钟前
蓝色牛马发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788513
求助须知:如何正确求助?哪些是违规求助? 5708718
关于积分的说明 15473598
捐赠科研通 4916529
什么是DOI,文献DOI怎么找? 2646443
邀请新用户注册赠送积分活动 1594106
关于科研通互助平台的介绍 1548507