Spatiotemporal Fusion of Land Surface Temperature Based on a Convolutional Neural Network

均方误差 遥感 计算机科学 传感器融合 卷积神经网络 图像分辨率 加权 融合 人工神经网络 时间分辨率 卫星 数据集 人工智能 模式识别(心理学) 数学 地理 统计 工程类 哲学 放射科 航空航天工程 物理 医学 量子力学 语言学
作者
Zhixiang Yin,Penghai Wu,Giles M. Foody,Yue Wu,Zihan Liu,Youwei Du,Feng Ling
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (2): 1808-1822 被引量:47
标识
DOI:10.1109/tgrs.2020.2999943
摘要

Due to the tradeoff between spatial and temporal resolutions commonly encountered in remote sensing, no single satellite sensor can provide fine spatial resolution land surface temperature (LST) products with frequent coverage. This situation greatly limits applications that require LST data with fine spatiotemporal resolution. Here, a deep learning-based spatiotemporal temperature fusion network (STTFN) method for the generation of fine spatiotemporal resolution LST products is proposed. In STTFN, a multiscale fusion convolutional neural network is employed to build the complex nonlinear relationship between input and output LSTs. Thus, unlike other LST spatiotemporal fusion approaches, STTFN is able to form the potentially complicated relationships through the use of training data without manually designed mathematical rules making it is more flexible and intelligent than other methods. In addition, two target fine spatial resolution LST images are predicted and then integrated by a spatiotemporal-consistency (STC)-weighting function to take advantage of STC of LST data. A set of analyses using two real LST data sets obtained from Landsat and moderate resolution imaging spectroradiometer (MODIS) were undertaken to evaluate the ability of STTFN to generate fine spatiotemporal resolution LST products. The results show that, compared with three classic fusion methods [the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), the spatiotemporal integrated temperature fusion model (STITFM), and the two-stream convolutional neural network for spatiotemporal image fusion (StfNet)], the proposed network produced the most accurate outputs [average root mean square error (RMSE) <; 1.40 °C and average structural similarity (SSIM) > 0.971].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快不了完成签到,获得积分10
1秒前
姜呱呱呱完成签到,获得积分10
2秒前
5秒前
8秒前
鲤鱼不吐泡泡完成签到 ,获得积分10
8秒前
kaka091完成签到,获得积分10
10秒前
12秒前
14秒前
llllly发布了新的文献求助10
14秒前
赵宏岩发布了新的文献求助10
15秒前
15秒前
Owen应助俭朴的世立采纳,获得10
16秒前
Progie应助呼啦呼啦采纳,获得10
16秒前
干净翠桃完成签到,获得积分10
17秒前
18秒前
quan完成签到 ,获得积分10
18秒前
善学以致用应助bestbanana采纳,获得10
19秒前
March完成签到,获得积分10
19秒前
荔枝要吃冰的完成签到 ,获得积分20
20秒前
LL发布了新的文献求助10
20秒前
21秒前
hcmsaobang2001完成签到,获得积分10
21秒前
Xiong发布了新的文献求助10
21秒前
llllly完成签到,获得积分10
23秒前
24秒前
星星发布了新的文献求助10
24秒前
星星完成签到,获得积分20
24秒前
Iris发布了新的文献求助10
27秒前
28秒前
callous完成签到,获得积分10
30秒前
30秒前
科研通AI2S应助杜林采纳,获得10
31秒前
畅快的念烟完成签到,获得积分10
33秒前
34秒前
我是老大应助科研通管家采纳,获得30
36秒前
充电宝应助科研通管家采纳,获得30
36秒前
打打应助科研通管家采纳,获得10
36秒前
所所应助科研通管家采纳,获得30
36秒前
Lucas应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043