清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Application of the Lomb-Scargle Periodogram to InvestigateHeart Rate Variability during Haemodialysis

预处理器 希尔伯特-黄变换 计算机科学 重采样 时间序列 插值(计算机图形学) 替代数据 人工智能 算法 数据挖掘 滤波器(信号处理) 模式识别(心理学) 机器学习 非线性系统 物理 运动(物理) 量子力学 计算机视觉
作者
Jill Stewart,Paul Stewart,Tom Walker,Latha Gullapudi,Mohamed Tarek Eldehni,Nicholas M. Selby,Maarten W. Taal
出处
期刊:Journal of Healthcare Engineering [Hindawi Publishing Corporation]
卷期号:2020: 1-18 被引量:7
标识
DOI:10.1155/2020/8862074
摘要

Short-term cardiovascular compensatory responses to perturbations in the circulatory system caused by haemodialysis can be investigated by the spectral analysis of heart rate variability, thus providing an important variable for categorising individual patients’ response, leading to a more personalised treatment. This is typically accomplished by resampling the irregular heart rate to generate an equidistant time series prior to spectral analysis, but resampling can further distort the data series whose interpretation can already be compromised by the presence of artefacts. The Lomb–Scargle periodogram provides a more direct method of spectral analysis as this method is specifically designed for large, irregularly sampled, and noisy datasets such as those obtained in clinical settings. However, guidelines for preprocessing patient data have been established in combination with equidistant time-series methods and their validity when used in combination with the Lomb–Scargle approach is missing from literature. This paper examines the effect of common preprocessing methods on the Lomb–Scargle power spectral density estimate using both real and synthetic heart rate data and will show that many common techniques for identifying and editing suspect data points, particularly interpolation and replacement, will distort the resulting power spectrum potentially misleading clinical interpretations of the results. Other methods are proposed and evaluated for use with the Lomb–Scargle approach leading to the main finding that suspicious data points should be excluded rather than edited, and where required, denoising of the heart rate signal can be reliably accomplished by empirical mode decomposition. Some additional methods were found to be particularly helpful when used in conjunction with the Lomb–Scargle periodogram, such as the use of a false alarm probability metric to establish whether spectral estimates are valid and help automate the assessment of valid heart rate records, potentially leading to greater use of this powerful technique in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
12秒前
19秒前
量子星尘发布了新的文献求助10
30秒前
34秒前
失眠店员发布了新的文献求助10
40秒前
量子星尘发布了新的文献求助10
41秒前
量子星尘发布了新的文献求助10
49秒前
Barid完成签到,获得积分10
49秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hazel完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
nicolaslcq完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
binyao2024完成签到,获得积分10
2分钟前
2分钟前
2分钟前
cadcae完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
华仔应助我为科研狂采纳,获得10
3分钟前
SciGPT应助水兰色采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
1250241652完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
back you up应助科研通管家采纳,获得30
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
guan完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
木子李发布了新的文献求助10
4分钟前
Elsio发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222233
关于积分的说明 9744081
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734538