Maxingxiongting mixture attenuates hypoxia pulmonary arterial hypertension to improve right ventricular hypertrophy by inhibiting the rho-kinase signaling pathway
Objective To explore the mechanism of Maxingxiongting mixture (MXXTM) on pulmonary hypertension in a rat model established by intraperitoneal injection of monocrotaline solution, smoking and forced swimming. Methods A total of 30 male Sprague-Dawley rats were randomly divided into five groups: control group, model group, high-dose of MXXTM group (HM), low-dose of MXXTM group (LM), and fasudil group. The mean pulmonary artery pressure (mPAP) was measured by using a miniature catheter. Lung tissue and right ventricular tissue sections were stained with hematoxylin-eosin. The right ventricle (RV) and left ventricle + septum (LV + S) were weighted. RV/(LV+S) was calculated to reflect the degree of right ventricular hypertrophy. Rho/Rho-kinase signaling pathway key proteins (RhoA, ROCK Ⅰ and ROCK Ⅱ) in rat right ventricular tissue were measured by Western blot analysis. The levels of serum hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and the levels of plasma renin activity (PRA), angiotensin Ⅱ (ANG-Ⅱ), aldosterone (ALD) in rat anticoagulated plasma were all measured by enzyme-linked immunosorbent assay. Results Compared with the control group, the mPAP and RV/(LV+S) in the model group were significantly increased. Administration of fasudil resulted in a significant decrease of mPAP and RV/ (LV+S). In the HM group and LM group, mPAP and RV/ (LV+S) were significantly lower than the model group. Compared with the control group, the contents of HIF-1α, VEGF, PRA, ANG-Ⅱ and ALD in the model group were significantly increased. The administration of fasudil and high-dose MXXTM significantly reduced the contents of HIF-1α, VEGF, PRA, ANG-II and ALD. Compared with the control group, the expression of RhoA, ROCK Ⅰ and ROCK Ⅱ in the right ventricle of the model group were significantly increased. The administration of fasudil and high-dose MXXTM significantly reduced the expression of RhoA and Rock Ⅱ proteins. Our results indicated that high-dose of MXXTM had similar effects on reducing pulmonary artery pressure and improving right ventricular remodeling to fasudil. However, MXXTM was unable to restore parameters above to control levels. Conclusions MXXTM attenuates hypoxia pulmonary arterial hypertension to improve right ventricular hypertrophy by inhibiting the Rho-kinase signaling pathway.