Application of machine learning techniques in operating parameters prediction of Stirling cryocooler

低温冷却器 斯特林发动机 计算机科学 相关向量机 人工神经网络 支持向量机 主成分分析 随机森林 机器学习 人工智能 工程类 机械工程
作者
Zhiming Yang,Shaoshuai Liu,Zhengtao Li,Zhenghua Jiang,Caiqian Dong
出处
期刊:Cryogenics [Elsevier]
卷期号:113: 103213-103213 被引量:8
标识
DOI:10.1016/j.cryogenics.2020.103213
摘要

The Stirling cryocoolers are widely used in the military and the aerospace fields due to many advantages such as high efficiency and compact structure. The output performance is affected by three parameters: compressor stroke, expander stroke, and the phase shift between them. How to quickly and effectively adjust the three parameters to meet the required cooling capacity with a higher COP is of great significance to the actual engineering application. When the cooling demand is changed, it takes a long time to calculate the corresponding high-efficiency operating parameters using the Stirling cryocooler simulation model on the market. In this paper, the prediction models of the optimal combination of operating parameters based on particle swarm optimization and commonly used machine learning techniques of back propagation neural network, support vector regression and random forest regression are established for the Stirling cryocooler. Besides, the impact of the two data preprocessing methods (min–max normalization and principal component analysis) on the PV power models and compressor stroke regression models based on three different machine learning techniques is analyzed, which shows that the use of principal component analysis can significantly enhance the performance of the back propagation neural network, and the normalization of the cryocooler parameters can improve the convergence of the support vector regression and the random forest regression. The results show that the regression models established by the three machine learning algorithms all have high accuracy and generalization. The regression model based on support vector machine has the best performance on the prediction of PV power and compressor stroke with small mean squared error, mean absolute error, average relative error, and high Pearson correlation coefficient. In addition, the research on the prediction models for the output performance is beneficial to propose a new control strategy, so as to improve the control system of the Stirling cryocooler.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
想啊想完成签到,获得积分10
2秒前
缥缈的冰彤完成签到,获得积分20
3秒前
3秒前
星辰大海应助123456采纳,获得10
4秒前
能干砖家完成签到,获得积分10
4秒前
小韩驳回了yar应助
5秒前
欣喜觅山完成签到 ,获得积分10
5秒前
w1发布了新的文献求助10
6秒前
6秒前
7秒前
xul279完成签到,获得积分10
8秒前
8秒前
斯文败类应助凶狠的飞凤采纳,获得10
8秒前
JingP发布了新的文献求助10
8秒前
9秒前
9秒前
123456完成签到,获得积分10
10秒前
七叶树完成签到,获得积分10
10秒前
丘比特应助sthsg采纳,获得10
11秒前
majf发布了新的文献求助10
11秒前
11秒前
abc完成签到,获得积分20
11秒前
zhaochen发布了新的文献求助10
11秒前
12秒前
Yfvonne发布了新的文献求助150
13秒前
AQ完成签到,获得积分10
13秒前
13秒前
littleprince完成签到,获得积分20
13秒前
carrier_hc完成签到,获得积分10
13秒前
Summer完成签到,获得积分10
13秒前
所所应助w1采纳,获得10
14秒前
传奇3应助鄢廷芮采纳,获得10
14秒前
Damiary完成签到,获得积分10
15秒前
张123412完成签到,获得积分10
15秒前
ztt27999完成签到,获得积分10
16秒前
16秒前
所所应助伊比利亚的微风采纳,获得10
16秒前
qiao发布了新的文献求助10
16秒前
小猪发布了新的文献求助10
16秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆热工水力特性及安全审评关键问题研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052959
求助须知:如何正确求助?哪些是违规求助? 2710182
关于积分的说明 7419994
捐赠科研通 2354794
什么是DOI,文献DOI怎么找? 1246282
科研通“疑难数据库(出版商)”最低求助积分说明 606047
版权声明 595975