Application of machine learning techniques in operating parameters prediction of Stirling cryocooler

低温冷却器 斯特林发动机 计算机科学 相关向量机 人工神经网络 支持向量机 主成分分析 随机森林 机器学习 人工智能 工程类 机械工程
作者
Zhiming Yang,Shaoshuai Liu,Zhengtao Li,Jiang Zheng-hua,Caiqian Dong
出处
期刊:Cryogenics [Elsevier BV]
卷期号:113: 103213-103213 被引量:11
标识
DOI:10.1016/j.cryogenics.2020.103213
摘要

The Stirling cryocoolers are widely used in the military and the aerospace fields due to many advantages such as high efficiency and compact structure. The output performance is affected by three parameters: compressor stroke, expander stroke, and the phase shift between them. How to quickly and effectively adjust the three parameters to meet the required cooling capacity with a higher COP is of great significance to the actual engineering application. When the cooling demand is changed, it takes a long time to calculate the corresponding high-efficiency operating parameters using the Stirling cryocooler simulation model on the market. In this paper, the prediction models of the optimal combination of operating parameters based on particle swarm optimization and commonly used machine learning techniques of back propagation neural network, support vector regression and random forest regression are established for the Stirling cryocooler. Besides, the impact of the two data preprocessing methods (min–max normalization and principal component analysis) on the PV power models and compressor stroke regression models based on three different machine learning techniques is analyzed, which shows that the use of principal component analysis can significantly enhance the performance of the back propagation neural network, and the normalization of the cryocooler parameters can improve the convergence of the support vector regression and the random forest regression. The results show that the regression models established by the three machine learning algorithms all have high accuracy and generalization. The regression model based on support vector machine has the best performance on the prediction of PV power and compressor stroke with small mean squared error, mean absolute error, average relative error, and high Pearson correlation coefficient. In addition, the research on the prediction models for the output performance is beneficial to propose a new control strategy, so as to improve the control system of the Stirling cryocooler.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
榜一大哥的负担完成签到 ,获得积分10
1秒前
Ray发布了新的文献求助10
4秒前
法外潮湿宝贝完成签到 ,获得积分10
10秒前
ceeray23应助科研通管家采纳,获得10
23秒前
634301059完成签到 ,获得积分10
30秒前
璇璇完成签到 ,获得积分10
32秒前
star完成签到,获得积分10
35秒前
Brave发布了新的文献求助10
39秒前
Perrylin718完成签到,获得积分10
44秒前
yzy完成签到,获得积分10
49秒前
回首不再是少年完成签到,获得积分0
57秒前
baoxiaozhai完成签到 ,获得积分10
1分钟前
光亮的自行车完成签到,获得积分0
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
小鱼医生完成签到 ,获得积分10
1分钟前
1分钟前
Slemon完成签到,获得积分10
1分钟前
缓慢乐天发布了新的文献求助10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
缓慢乐天完成签到,获得积分10
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
文献完成签到 ,获得积分10
1分钟前
久伴久爱完成签到 ,获得积分10
1分钟前
陈醋塔塔完成签到,获得积分10
2分钟前
龙王爱吃糖完成签到 ,获得积分10
2分钟前
学术达人应助persist采纳,获得30
2分钟前
wyh295352318完成签到 ,获得积分10
2分钟前
2分钟前
1002SHIB完成签到,获得积分10
2分钟前
nihaolaojiu完成签到,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
sheetung完成签到,获得积分10
2分钟前
麦田麦兜完成签到,获得积分10
2分钟前
Shawn完成签到 ,获得积分10
2分钟前
Rayoo发布了新的文献求助10
2分钟前
辛勤的芾完成签到,获得积分10
2分钟前
佳期如梦完成签到 ,获得积分10
2分钟前
我是老大应助Rayoo采纳,获得10
2分钟前
鲸鱼打滚完成签到 ,获得积分10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076083
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783291
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839