内科学
NADPH氧化酶
内分泌学
压力过载
血管紧张素II
氧化应激
肌肉肥大
活性氧
心力衰竭
生物
医学
血压
细胞生物学
心肌肥大
作者
Guojun Zhao,Chang‐Ling Zhao,Shan Ouyang,Ke‐Qiong Deng,Lihua Zhu,Augusto C. Montezano,Changjiang Zhang,Fengjiao Hu,Xue‐Yong Zhu,Song Tian,Xiaolan Liu,Yan‐Xiao Ji,Peng Zhang,Xiao‐Jing Zhang,Zhi‐Gang She,Rhian M. Touyz,Hongliang Li
出处
期刊:Hypertension
[Lippincott Williams & Wilkins]
日期:2020-07-20
卷期号:76 (3): 827-838
被引量:50
标识
DOI:10.1161/hypertensionaha.120.15558
摘要
NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and β-MHC (β-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.
科研通智能强力驱动
Strongly Powered by AbleSci AI