Electrocatalytic CO2 Reduction to Fuels: Progress and Opportunities

催化作用 可再生能源 纳米技术 双金属片 生化工程 还原(数学) 工艺工程 计算机科学 化学 环境科学 风险分析(工程) 材料科学 业务 工程类 电气工程 数学 生物化学 几何学
作者
Joaquin Resasco,Alexis T. Bell
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:2 (9): 825-836 被引量:167
标识
DOI:10.1016/j.trechm.2020.06.007
摘要

Standard practices are necessary for accurate assessment of catalytic performance for CO2 reduction. Catalyst design efforts aimed at improving the activity of Cu for CO2 reduction have been largely unsuccessful. Opportunities remain for modifying Cu through formation of surface alloys. For practical application of CO2 reduction, transition to gas-fed systems is necessary. Increasing fundamental understanding of surface chemistry will continue to aid the development of efficient CO2 reduction systems. The electrochemical reduction of CO2 remains an appealing option for storing renewable energy in a chemical form. In this review, we assess progress in designing catalysts that convert CO2 to high energy density products. We explain how reaction data can be reported to reflect the intrinsic properties of the catalyst. This analysis shows that limited advances have been made in improving the performance of Cu. We suggest that opportunities remain using bimetallic catalysts that are resistant to dealloying. While aqueous systems are instrumental to developing our understanding of this chemistry, gas-fed systems that operate at high current densities must be developed. Although obstacles remain for practical application of CO2 reduction, advances in fundamental understanding made over the years give reason for optimism. The electrochemical reduction of CO2 remains an appealing option for storing renewable energy in a chemical form. In this review, we assess progress in designing catalysts that convert CO2 to high energy density products. We explain how reaction data can be reported to reflect the intrinsic properties of the catalyst. This analysis shows that limited advances have been made in improving the performance of Cu. We suggest that opportunities remain using bimetallic catalysts that are resistant to dealloying. While aqueous systems are instrumental to developing our understanding of this chemistry, gas-fed systems that operate at high current densities must be developed. Although obstacles remain for practical application of CO2 reduction, advances in fundamental understanding made over the years give reason for optimism. the fraction of total charge used in a specific Faradaic process (to produce a certain product). for reaction to occur, reactants must be transported to and products transported from the catalyst surface. When surface reaction rates become sufficiently high, overall measured rates will be influenced by these transport processes, masking the intrinsic kinetic behavior of the catalyst surface. Under conditions of mass transport limitations, the conditions in the electrolyte (pH, concentration of CO2) near the catalyst surface will differ significantly from the bulk solution. defined by the Tafel equation that relates applied potential and current density,η = a + b log (j), where η is the overpotential or the difference between the electrode potential and the standard potential, a is the exchange current density, b is the Tafel slope, and j is the current density. The Tafel slope quantifies the sensitivity of the current density to the applied potential. In principle, experimentally observed Tafel slopes can be compared with theoretically derived slopes based on a microkinetic model. the number of molecules of a specified product made per catalytic site per unit time. TOFs generally depend on electrode potential, reactant concentration, temperature, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
代包子发布了新的文献求助10
1秒前
cdercder应助AAA采纳,获得10
1秒前
2秒前
mocheer完成签到,获得积分10
2秒前
沙珠完成签到,获得积分10
3秒前
fenghuo发布了新的文献求助30
3秒前
4秒前
木木发布了新的文献求助10
5秒前
lxr2发布了新的文献求助10
6秒前
123456完成签到,获得积分10
6秒前
6秒前
Estrella完成签到,获得积分10
6秒前
SYanan完成签到 ,获得积分10
7秒前
李小新完成签到 ,获得积分20
8秒前
研友_Z1WkgL发布了新的文献求助10
8秒前
QQ完成签到 ,获得积分10
8秒前
混子小高完成签到 ,获得积分10
9秒前
香蕉觅云应助alexisgood采纳,获得10
10秒前
代包子完成签到 ,获得积分20
10秒前
10秒前
任性的蝴蝶完成签到,获得积分10
11秒前
堂风发布了新的文献求助10
12秒前
lrll发布了新的文献求助20
15秒前
小天竺1212发布了新的文献求助20
15秒前
Cheng完成签到 ,获得积分10
15秒前
平常从蓉完成签到,获得积分10
16秒前
Jerry完成签到,获得积分10
16秒前
豆子完成签到,获得积分10
17秒前
孙成成完成签到 ,获得积分10
17秒前
哇哈哈哈完成签到,获得积分10
18秒前
OceanBlvdforme完成签到,获得积分10
19秒前
Orange应助lxr2采纳,获得10
19秒前
务实大神完成签到,获得积分10
20秒前
久别完成签到,获得积分10
21秒前
榆钱草发布了新的文献求助30
21秒前
乐乐应助开放馒头采纳,获得10
22秒前
小不溜完成签到 ,获得积分10
22秒前
纪鹏飞完成签到,获得积分10
23秒前
成就绮琴完成签到 ,获得积分10
24秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736836
求助须知:如何正确求助?哪些是违规求助? 3280783
关于积分的说明 10020943
捐赠科研通 2997447
什么是DOI,文献DOI怎么找? 1644596
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749689