电解质
电导率
化学物理
分子动力学
离子电导率
离子
离子键合
材料科学
缩放比例
介电谱
吸收(声学)
电介质
化学
电化学
计算化学
物理化学
光电子学
复合材料
数学
电极
有机化学
几何学
作者
Vasileios Balos,Sho Imoto,Roland R. Netz,Mischa Bonn,Douwe Jan Bonthuis,Yuki Nagata,Johannes Hunger
标识
DOI:10.1038/s41467-020-15450-2
摘要
Abstract Despite the widespread use of aqueous electrolytes as conductors, the molecular mechanism of ionic conductivity at moderate to high electrolyte concentrations remains largely unresolved. Using a combination of dielectric spectroscopy and molecular dynamics simulations, we show that the absorption of electrolytes at ~0.3 THz sensitively reports on the local environment of ions. The magnitude of these high-frequency ionic motions scales linearly with conductivity for a wide range of ions and concentrations. This scaling is rationalized within a harmonic oscillator model based on the potential of mean force extracted from simulations. Our results thus suggest that long-ranged ionic transport is intimately related to the local energy landscape and to the friction for short-ranged ion dynamics: a high macroscopic electrolyte conductivity is thereby shown to be related to large-amplitude motions at a molecular scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI