Berry连接和曲率
物理
凝聚态物理
几何相位
位置和动量空间
量子霍尔效应
电子
自旋波
准粒子
量子力学
波包
铁磁性
超导电性
作者
Max Hirschberger,Yusuke Nomura,Hiroyuki Mitamura,Atsushi Miyake,Takashi Koretsune,Y. Kaneko,Leonie Spitz,Y. Taguchi,Akira Matsuo,Koichi Kindo,Ryotaro Arita,Masashi Tokunaga,Yoshinori Tokura
出处
期刊:Physical review
[American Physical Society]
日期:2021-01-25
卷期号:103 (4)
被引量:15
标识
DOI:10.1103/physrevb.103.l041111
摘要
When nanometric, noncoplanar spin textures with scalar spin chirality (SSC) are coupled to itinerant electrons, they endow the quasiparticle wave functions with a gauge field, termed Berry curvature, in a way that bears analogy to relativistic spin-orbit coupling (SOC). The resulting deflection of moving charge carriers is termed the geometrical (or topological) Hall effect. Previous experimental studies modeled this signal as a real-space motion of wave packets under the influence of a quantum-mechanical phase. In contrast, we here compare the modification of Bloch waves themselves and of their energy dispersion due to SOC and SSC. Using the canted pyrochlore ferromagnet ${\mathrm{Nd}}_{2}{\mathrm{Mo}}_{2}{\mathrm{O}}_{7}$ as a model compound, our transport experiments and first-principles calculations show that SOC impartially mixes electronic bands with equal or opposite spin, while SSC is much more effective for opposite-spin band pairs.
科研通智能强力驱动
Strongly Powered by AbleSci AI