已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression

电池(电) 支持向量机 电池容量 计算机科学 均方误差 回归 数据挖掘 人工智能 数学 统计 功率(物理) 量子力学 物理
作者
Xiaoyu Li,Changgui Yuan,Zhenpo Wang
出处
期刊:Energy [Elsevier]
卷期号:203: 117852-117852 被引量:238
标识
DOI:10.1016/j.energy.2020.117852
摘要

Precise battery capacity estimation and monitoring are of extreme importance for the future intelligent battery management system. The primary technical issues result from the absence of enough cognition for battery aging mechanism and effective modeling in complex application scenarios. Synthesis theoretical analysis and engineering application, incremental capacity analysis approach may be accessible in actual operation. This paper proposes a data-driven prediction technique, support vector regression for establishing a battery degradation model, which estimates battery capacity by partial incremental capacity curves. Firstly, the advanced filter algorithms are utilized to smooth incremental capacity curves and then a peak fitting technique is applied to decompose the smooth curves. The battery health features are extracted from decomposed incremental capacity curves as training datasets. Using different sizes of training datasets, three battery degradation models are established based on the support vectors regression algorithm. The performances of the proposed models are comparison analyses for each testing dataset. The aging datasets are collected from other three batteries applied to extensively verify the proposed method. Quantitatively, mean absolute errors (MAEs) and root mean square errors (RMSEs) of the three models are both limited to 2%. Otherwise, the accuracy of Model3 is improved about 30% in MAEs and RMSEs. • Two filter methods are proposed to smooth the incremental capacity curves. • Novel peak fitting based method decomposes the smooth incremental capacity curves. • Health factors extract from areas, peaks and heights of the decomposed curves. • SVR-based degradation models learn from different sizes of training datasets. • Two type batteries verify and evaluate the performances of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SS发布了新的文献求助10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
4秒前
6秒前
10秒前
在水一方应助王富贵采纳,获得10
11秒前
一一完成签到,获得积分10
12秒前
大个应助W_H采纳,获得10
13秒前
13秒前
枇杷完成签到 ,获得积分10
13秒前
14秒前
安然发布了新的文献求助10
14秒前
15秒前
18秒前
19秒前
完美世界应助美好的友琴采纳,获得10
19秒前
rmbsLHC发布了新的文献求助10
20秒前
23秒前
小包子发布了新的文献求助10
26秒前
安然发布了新的文献求助10
28秒前
Greetdawn完成签到,获得积分10
29秒前
薛定谔的猫完成签到,获得积分10
29秒前
Akim应助麦尔哈巴采纳,获得10
31秒前
31秒前
ggymy完成签到,获得积分10
33秒前
还在考虑完成签到,获得积分10
34秒前
35秒前
fsznc1完成签到 ,获得积分0
37秒前
红烧麻辣兔头完成签到,获得积分10
38秒前
38秒前
trojan621完成签到,获得积分10
39秒前
花笙发布了新的文献求助10
39秒前
羊肉沫完成签到,获得积分10
39秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484176
求助须知:如何正确求助?哪些是违规求助? 3073236
关于积分的说明 9130199
捐赠科研通 2764925
什么是DOI,文献DOI怎么找? 1517450
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701095