State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression

电池(电) 支持向量机 电池容量 计算机科学 均方误差 回归 数据挖掘 人工智能 数学 统计 功率(物理) 量子力学 物理
作者
Xiaoyu Li,Changgui Yuan,Zhenpo Wang
出处
期刊:Energy [Elsevier BV]
卷期号:203: 117852-117852 被引量:238
标识
DOI:10.1016/j.energy.2020.117852
摘要

Precise battery capacity estimation and monitoring are of extreme importance for the future intelligent battery management system. The primary technical issues result from the absence of enough cognition for battery aging mechanism and effective modeling in complex application scenarios. Synthesis theoretical analysis and engineering application, incremental capacity analysis approach may be accessible in actual operation. This paper proposes a data-driven prediction technique, support vector regression for establishing a battery degradation model, which estimates battery capacity by partial incremental capacity curves. Firstly, the advanced filter algorithms are utilized to smooth incremental capacity curves and then a peak fitting technique is applied to decompose the smooth curves. The battery health features are extracted from decomposed incremental capacity curves as training datasets. Using different sizes of training datasets, three battery degradation models are established based on the support vectors regression algorithm. The performances of the proposed models are comparison analyses for each testing dataset. The aging datasets are collected from other three batteries applied to extensively verify the proposed method. Quantitatively, mean absolute errors (MAEs) and root mean square errors (RMSEs) of the three models are both limited to 2%. Otherwise, the accuracy of Model3 is improved about 30% in MAEs and RMSEs. • Two filter methods are proposed to smooth the incremental capacity curves. • Novel peak fitting based method decomposes the smooth incremental capacity curves. • Health factors extract from areas, peaks and heights of the decomposed curves. • SVR-based degradation models learn from different sizes of training datasets. • Two type batteries verify and evaluate the performances of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狗子完成签到 ,获得积分10
刚刚
刚刚
小花完成签到 ,获得积分10
1秒前
lee完成签到,获得积分10
2秒前
孙明浩完成签到 ,获得积分10
2秒前
wxxz123发布了新的文献求助10
2秒前
橘猫完成签到,获得积分10
3秒前
4秒前
4秒前
赘婿应助小鱼采纳,获得10
5秒前
5秒前
小HO完成签到,获得积分10
5秒前
6秒前
Wakey发布了新的文献求助10
7秒前
aaa完成签到 ,获得积分10
7秒前
7秒前
Hello应助aaaaaa采纳,获得10
8秒前
22222发布了新的文献求助30
8秒前
8秒前
luchen发布了新的文献求助10
8秒前
中宝应助文件撤销了驳回
9秒前
nanfeng完成签到 ,获得积分10
9秒前
10秒前
bkagyin应助可恶的文献采纳,获得10
10秒前
小曾发布了新的文献求助10
11秒前
文静不评完成签到 ,获得积分10
12秒前
12秒前
xuxingxing完成签到,获得积分10
13秒前
管遥完成签到 ,获得积分10
13秒前
小二郎应助wlw采纳,获得10
13秒前
无趣养乐多完成签到 ,获得积分10
13秒前
ChenJohnny完成签到,获得积分10
14秒前
14秒前
情怀应助听闻采纳,获得10
14秒前
Xu完成签到,获得积分10
15秒前
万能图书馆应助wwww采纳,获得10
15秒前
wyvern114发布了新的文献求助10
15秒前
gudujian870928完成签到,获得积分10
15秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960905
求助须知:如何正确求助?哪些是违规求助? 3507164
关于积分的说明 11134060
捐赠科研通 3239538
什么是DOI,文献DOI怎么找? 1790202
邀请新用户注册赠送积分活动 872199
科研通“疑难数据库(出版商)”最低求助积分说明 803149