Direct Copper Patterning at High Deposition Rate By Using Environmentally Compatible Electroplating Process

电镀 电镀(地质) 镀铜 沉积(地质) 材料科学 电解质 基质(水族馆) 冶金 纳米技术 化学工程 电极 化学 工程类 图层(电子) 古生物学 物理化学 地质学 海洋学 生物 地球物理学 沉积物
作者
Hiroshi Yanagimoto,Rentaro Mori,Kazuaki Okamoto,Haruki Kondo,Keiji Kuroda,Junya Murai
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (21): 1256-1256
标识
DOI:10.1149/ma2020-01211256mtgabs
摘要

Electroplating has been an important process to produce electronic devices, automotive parts, decorative materials and so on. In contrast to that, plating is endowed with environmental issues originated from exhaust fluids and acid mists. Therefore, it is limited to construct new production line in spite of necessity of plating. Moreover, it is difficult to improve productivity drastically due to completely established plating technology in 21 th century. To break down demerits of conventional electroplating, we focus on the fundamental issue regarding with the plating process that can be performed in electrolyte bath. Recently, we have developed novel electroplating process named solid electrodeposition (SED), which is characterized by metal ion electrophoresis through solid electrolyte membrane 1) . This process has unique deposition behavior that the metal deposition on substrate proceeds only on contact area with the membrane, like a stamping process. The SED has a merit of reducing amount of exhaust fluids as well as direct patterned deposition reflecting the membrane shape. Therefore, we believe that SED is highly promising process to metallize the substrate instead of the conventional electroplating. In this study, we report on copper deposition mechanism and direct fine pattering process by applying SED. We evaluate the limitation of copper deposition rate under controlled process parameters. As a result of that, the maximum deposition rate reaches over 0.63A/dm 2 (14μm/min), which should be relatively higher than conventional one. The impressive value is originated from metal transfer mechanism into membrane as well as the device configuration. The metal deposition proceeds on solid-solid interface between membrane and substrate so that no diffusion layer exist near the substrate 2) . Moreover, the distance between anode and cathode can be shorten because the membrane preserves electrolyte solution. The copper film deposited from electrolyte solution without additives exhibits relatively smooth and minute surface morphology. This may be because membrane contacted on substrate restricts abnormal Cu growth due to contact pressure. SED has a merit for direct patterned deposition reflecting membrane shape, but it is not easy to fabricate fine patterns without masking. Therefore, it is limited to apply high-end parts such as printed circuit boards and sensor devices. To overcome this problem, we have developed direct fine patterning process by combining SED with dry coating and etching technologies. Figure 1 shows schematic diagram and photographs of each step. Firstly, the metal thin layer is formed on substrate by means of sputtering (electrode layer). Secondary, silver nanoparticles are printed as fine circuit patterns and sintered at optimal temperature (seed layer). Thirdly, copper was selectively deposited on seed layer by means of SED, which utilizes the potential difference between electrode and seed layers. The SED proceeds through isotropic growth along vertical direction because the deposition occurs on the surface of seed layer contacted with the membrane. Therefore, SED can produce relative thick and fine patterns following line width of seed layers. Finally, the bear electrode layer is etched away by plasma exposure. We believe that this approach is highly promising process to fabricate circuit pattern in terms of cost (simple step) and environmental (no exhaust fluids) point of view. 1. H. Yanagimoto, R. Mori, K. Okamoto and J. Murai, F01-994, 236 nd ECS Meeting. 2. Y. Narui, Y. Hoshi, I. Shitanda, M. Itagaki, H. Yanagimoto, M. Hiraoka and H. Iisaka, E01-920, 232 nd ECS Meeting. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
九川发布了新的文献求助10
2秒前
风的季节发布了新的文献求助10
2秒前
可耐的乐荷完成签到,获得积分10
3秒前
WEILAI完成签到,获得积分10
3秒前
my发布了新的文献求助10
3秒前
wenjian完成签到,获得积分10
4秒前
4秒前
Accept2024完成签到,获得积分10
5秒前
万能图书馆应助笑笑采纳,获得10
5秒前
伊丽莎白居易完成签到,获得积分10
6秒前
鳗鱼静珊发布了新的文献求助10
6秒前
yuyiyi完成签到,获得积分10
7秒前
无花果应助胖豆采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
10秒前
MILL发布了新的文献求助10
10秒前
月光入梦完成签到 ,获得积分10
11秒前
HC完成签到,获得积分10
12秒前
琪琪发布了新的文献求助10
12秒前
13秒前
淡定的思松应助风的季节采纳,获得10
14秒前
所所应助mm采纳,获得10
14秒前
15秒前
荒年完成签到,获得积分10
15秒前
魁梧的曼凡完成签到,获得积分10
15秒前
16秒前
研一小刘发布了新的文献求助10
16秒前
陈莹完成签到,获得积分20
16秒前
qi发布了新的文献求助30
17秒前
17秒前
Wyan完成签到,获得积分20
17秒前
我是老大应助通~采纳,获得10
18秒前
Jenny应助淡定紫菱采纳,获得10
18秒前
逆流的鱼完成签到 ,获得积分10
19秒前
19秒前
liuqian完成签到,获得积分10
20秒前
Hou完成签到 ,获得积分10
20秒前
反杀闰土的猹完成签到 ,获得积分20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794