Construction of a prognostic model for lung adenocarcinoma based on bioinformatics analysis of metabolic genes

单变量 比例危险模型 基因 腺癌 生物 Lasso(编程语言) 单变量分析 生存分析 肿瘤科 内科学 肺癌 生物信息学 癌症 遗传学 医学 多元分析 多元统计 计算机科学 机器学习 万维网
作者
Jie He,Wentao Li,Li Yu,Guangnan Liu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:9 (5): 3518-3538 被引量:7
标识
DOI:10.21037/tcr-20-1571
摘要

Long-term observations and studies have found that the occurrence and development of lung adenocarcinoma (LUAD) is associated with certain metabolic changes and that metabolic disorders are directly related to carcinogenic gene mutations. We attempted to establish a prognostic model for LUAD based on the expression profiles of metabolic genes.We analyzed the gene expression profiles of patients with LUAD obtained from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to assess the correlation between each metabolic gene and survival. The survival-related metabolic genes were fit into the least absolute shrinkage and selection operator (LASSO) to establish a prognostic model for LUAD. After 100,000 times of calculations and model construction, we successfully established a prognostic model consisting of 16 genes that can classify patients with LUAD into high-risk and low-risk groups. Further, the protein-protein interaction (PPI) network was built to determine the hub gene from16 metabolic genes. Finally, the top one hub gene was validated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in our 50 paired LUAD and adjacent tissues, and the prognostic performance of 16 metabolic genes was validated in GEO LUAD cohorts.Univariate Cox regression analysis and LASSO regression analysis results showed that the prognostic model established based on 16 metabolic genes could differentiate patients with LUAD with significantly different overall survival (OS) and that the prognosis of the high-risk group was worse than that of the low-risk group. In addition, the model can independently predict the OS of patients in both the training cohort and the validation cohort (training cohort: HR =2.44, 95% CI: 1.58-3.74, P<0.05; validation cohort: HR =2.15, 95% CI: 2.52-2.70, P<0.05). The decision curve analysis further showed that the combination use of the prognostic model and clinical features could better predict the survival of patients and benefit patients. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed several basic signaling pathways and biological processes of metabolic genes in LUAD. Combined with the clinical features and metabolic gene characteristics of patients with LUAD, we also constructed a survival nomogram with a C-index of 0.701 to predict the survival probability of patients. The calibration curve confirmed that the nomogram predications were consistent with the actual observation results. The top one hub gene was TYMS, which was determined by PPI. TYMS levels in LUAD were detected by RT-qPCR and the expression of TYMS was significantly up-regulated in the LUAD tissue of all 50 pairs (t=11.079, P<0.0001). Simultaneously, the correct of the prognostic model was validated, based on the data in GSE37745.We constructed and validated a new prognostic model based on metabolic genes. This model could provide guidance for the personalized treatment of patients and improve the accuracy of individualized prognoses for patients with LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
221完成签到,获得积分10
刚刚
华仔完成签到,获得积分10
刚刚
iNk应助酷酷的山雁采纳,获得10
3秒前
陈慧钦发布了新的文献求助10
3秒前
3秒前
tiatia应助5999采纳,获得10
3秒前
5秒前
香蕉觅云应助Lee采纳,获得10
6秒前
充电宝应助研友_8Kedgn采纳,获得10
7秒前
研研发布了新的文献求助10
7秒前
汉堡包应助blueskyzhi采纳,获得10
7秒前
皮蛋完成签到,获得积分10
9秒前
9秒前
鱼贝贝完成签到 ,获得积分10
11秒前
懒洋洋完成签到 ,获得积分10
13秒前
yaxuandeng完成签到,获得积分10
14秒前
14秒前
浮游应助wocao采纳,获得10
15秒前
Lee发布了新的文献求助10
17秒前
18秒前
deeperection发布了新的文献求助10
20秒前
22秒前
丘比特应助ahfjk采纳,获得10
23秒前
youxiu完成签到 ,获得积分10
23秒前
24秒前
dolabmu完成签到 ,获得积分10
25秒前
25秒前
26秒前
jiaxiangxia完成签到 ,获得积分10
27秒前
wang发布了新的文献求助10
27秒前
28秒前
HuSP完成签到,获得积分10
30秒前
菜菜博士发布了新的文献求助10
31秒前
xiaoqi完成签到,获得积分10
31秒前
一包辣条完成签到,获得积分10
31秒前
Rong完成签到 ,获得积分10
31秒前
研友_8Kedgn发布了新的文献求助10
33秒前
应飞飞完成签到,获得积分10
33秒前
甜甜圈完成签到 ,获得积分10
33秒前
厚德载物完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429