Construction of a prognostic model for lung adenocarcinoma based on bioinformatics analysis of metabolic genes

单变量 比例危险模型 基因 腺癌 生物 Lasso(编程语言) 单变量分析 生存分析 肿瘤科 内科学 肺癌 生物信息学 癌症 遗传学 医学 多元分析 多元统计 计算机科学 机器学习 万维网
作者
Jie He,Wentao Li,Li Yu,Guangnan Liu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:9 (5): 3518-3538 被引量:7
标识
DOI:10.21037/tcr-20-1571
摘要

Long-term observations and studies have found that the occurrence and development of lung adenocarcinoma (LUAD) is associated with certain metabolic changes and that metabolic disorders are directly related to carcinogenic gene mutations. We attempted to establish a prognostic model for LUAD based on the expression profiles of metabolic genes.We analyzed the gene expression profiles of patients with LUAD obtained from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to assess the correlation between each metabolic gene and survival. The survival-related metabolic genes were fit into the least absolute shrinkage and selection operator (LASSO) to establish a prognostic model for LUAD. After 100,000 times of calculations and model construction, we successfully established a prognostic model consisting of 16 genes that can classify patients with LUAD into high-risk and low-risk groups. Further, the protein-protein interaction (PPI) network was built to determine the hub gene from16 metabolic genes. Finally, the top one hub gene was validated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in our 50 paired LUAD and adjacent tissues, and the prognostic performance of 16 metabolic genes was validated in GEO LUAD cohorts.Univariate Cox regression analysis and LASSO regression analysis results showed that the prognostic model established based on 16 metabolic genes could differentiate patients with LUAD with significantly different overall survival (OS) and that the prognosis of the high-risk group was worse than that of the low-risk group. In addition, the model can independently predict the OS of patients in both the training cohort and the validation cohort (training cohort: HR =2.44, 95% CI: 1.58-3.74, P<0.05; validation cohort: HR =2.15, 95% CI: 2.52-2.70, P<0.05). The decision curve analysis further showed that the combination use of the prognostic model and clinical features could better predict the survival of patients and benefit patients. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed several basic signaling pathways and biological processes of metabolic genes in LUAD. Combined with the clinical features and metabolic gene characteristics of patients with LUAD, we also constructed a survival nomogram with a C-index of 0.701 to predict the survival probability of patients. The calibration curve confirmed that the nomogram predications were consistent with the actual observation results. The top one hub gene was TYMS, which was determined by PPI. TYMS levels in LUAD were detected by RT-qPCR and the expression of TYMS was significantly up-regulated in the LUAD tissue of all 50 pairs (t=11.079, P<0.0001). Simultaneously, the correct of the prognostic model was validated, based on the data in GSE37745.We constructed and validated a new prognostic model based on metabolic genes. This model could provide guidance for the personalized treatment of patients and improve the accuracy of individualized prognoses for patients with LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悠着点儿卷吧完成签到 ,获得积分10
刚刚
2秒前
君莫笑完成签到,获得积分10
3秒前
李九月发布了新的文献求助10
4秒前
十八完成签到 ,获得积分10
4秒前
小董不懂发布了新的文献求助10
4秒前
超帅的访云完成签到,获得积分10
5秒前
超人也读博完成签到,获得积分20
6秒前
小肆完成签到 ,获得积分10
6秒前
8秒前
Beth完成签到,获得积分10
9秒前
10秒前
bkagyin应助fengdengjin采纳,获得10
10秒前
安AN完成签到,获得积分10
10秒前
11秒前
17381362015完成签到,获得积分10
12秒前
Xu完成签到,获得积分10
13秒前
13秒前
傅全有完成签到,获得积分10
14秒前
bkagyin应助liwanhong采纳,获得10
14秒前
RussellZ发布了新的文献求助10
14秒前
可期发布了新的文献求助10
15秒前
16秒前
yuan完成签到,获得积分10
16秒前
cureall应助yihuifa采纳,获得10
16秒前
17秒前
阔达翠彤完成签到,获得积分10
17秒前
17秒前
爱喝酒的酒葫芦完成签到,获得积分10
17秒前
shmily完成签到,获得积分10
19秒前
19秒前
重要的奇异果完成签到,获得积分10
20秒前
21秒前
酷波er应助Echo采纳,获得10
21秒前
兜大王发布了新的文献求助10
22秒前
adi完成签到,获得积分10
22秒前
大厨懒洋洋完成签到,获得积分10
22秒前
23秒前
青天白日发布了新的文献求助20
24秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150