Construction of a prognostic model for lung adenocarcinoma based on bioinformatics analysis of metabolic genes

单变量 比例危险模型 基因 腺癌 生物 Lasso(编程语言) 单变量分析 生存分析 肿瘤科 内科学 肺癌 生物信息学 癌症 遗传学 医学 多元分析 多元统计 计算机科学 机器学习 万维网
作者
Jie He,Wentao Li,Li Yu,Guangnan Liu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:9 (5): 3518-3538 被引量:7
标识
DOI:10.21037/tcr-20-1571
摘要

Long-term observations and studies have found that the occurrence and development of lung adenocarcinoma (LUAD) is associated with certain metabolic changes and that metabolic disorders are directly related to carcinogenic gene mutations. We attempted to establish a prognostic model for LUAD based on the expression profiles of metabolic genes.We analyzed the gene expression profiles of patients with LUAD obtained from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to assess the correlation between each metabolic gene and survival. The survival-related metabolic genes were fit into the least absolute shrinkage and selection operator (LASSO) to establish a prognostic model for LUAD. After 100,000 times of calculations and model construction, we successfully established a prognostic model consisting of 16 genes that can classify patients with LUAD into high-risk and low-risk groups. Further, the protein-protein interaction (PPI) network was built to determine the hub gene from16 metabolic genes. Finally, the top one hub gene was validated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in our 50 paired LUAD and adjacent tissues, and the prognostic performance of 16 metabolic genes was validated in GEO LUAD cohorts.Univariate Cox regression analysis and LASSO regression analysis results showed that the prognostic model established based on 16 metabolic genes could differentiate patients with LUAD with significantly different overall survival (OS) and that the prognosis of the high-risk group was worse than that of the low-risk group. In addition, the model can independently predict the OS of patients in both the training cohort and the validation cohort (training cohort: HR =2.44, 95% CI: 1.58-3.74, P<0.05; validation cohort: HR =2.15, 95% CI: 2.52-2.70, P<0.05). The decision curve analysis further showed that the combination use of the prognostic model and clinical features could better predict the survival of patients and benefit patients. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed several basic signaling pathways and biological processes of metabolic genes in LUAD. Combined with the clinical features and metabolic gene characteristics of patients with LUAD, we also constructed a survival nomogram with a C-index of 0.701 to predict the survival probability of patients. The calibration curve confirmed that the nomogram predications were consistent with the actual observation results. The top one hub gene was TYMS, which was determined by PPI. TYMS levels in LUAD were detected by RT-qPCR and the expression of TYMS was significantly up-regulated in the LUAD tissue of all 50 pairs (t=11.079, P<0.0001). Simultaneously, the correct of the prognostic model was validated, based on the data in GSE37745.We constructed and validated a new prognostic model based on metabolic genes. This model could provide guidance for the personalized treatment of patients and improve the accuracy of individualized prognoses for patients with LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
树wire发布了新的文献求助10
1秒前
scige发布了新的文献求助10
4秒前
xxxx完成签到 ,获得积分10
5秒前
酷酷涫完成签到 ,获得积分0
7秒前
勤恳的灵雁完成签到 ,获得积分10
9秒前
chengmin完成签到 ,获得积分10
11秒前
沙漠西瓜皮完成签到 ,获得积分10
12秒前
13秒前
heather完成签到 ,获得积分10
15秒前
19秒前
Jerry3Zz发布了新的文献求助10
20秒前
香蕉觅云应助anlikek采纳,获得10
20秒前
FashionBoy应助小胡采纳,获得10
21秒前
林夕完成签到 ,获得积分10
23秒前
lllkkk发布了新的文献求助10
26秒前
复杂真完成签到,获得积分10
27秒前
树wire完成签到 ,获得积分10
29秒前
方方完成签到 ,获得积分10
32秒前
英俊的铭应助机灵猕猴桃采纳,获得10
35秒前
111完成签到,获得积分10
35秒前
carrot完成签到 ,获得积分10
38秒前
脑洞疼应助科研通管家采纳,获得10
39秒前
观妙散人完成签到,获得积分10
40秒前
41秒前
WD完成签到 ,获得积分10
44秒前
看见了紫荆花完成签到 ,获得积分10
44秒前
科研通AI2S应助机灵猕猴桃采纳,获得30
51秒前
lllkkk发布了新的文献求助10
52秒前
小李完成签到 ,获得积分10
54秒前
glanceofwind完成签到 ,获得积分10
55秒前
火星上莛完成签到 ,获得积分10
57秒前
平常雨泽完成签到 ,获得积分10
58秒前
anlikek发布了新的文献求助20
58秒前
贰鸟应助阔达苗条采纳,获得20
58秒前
1分钟前
打打应助lllkkk采纳,获得10
1分钟前
anlikek发布了新的文献求助10
1分钟前
怎么会睡不醒完成签到 ,获得积分10
1分钟前
晴天完成签到 ,获得积分10
1分钟前
Ashley完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818724
关于积分的说明 7922021
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443