亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Construction of a prognostic model for lung adenocarcinoma based on bioinformatics analysis of metabolic genes

单变量 比例危险模型 基因 腺癌 生物 Lasso(编程语言) 单变量分析 生存分析 肿瘤科 内科学 肺癌 生物信息学 癌症 遗传学 医学 多元分析 多元统计 计算机科学 机器学习 万维网
作者
Jie He,Wentao Li,Li Yu,Guangnan Liu
出处
期刊:Translational cancer research [AME Publishing Company]
卷期号:9 (5): 3518-3538 被引量:7
标识
DOI:10.21037/tcr-20-1571
摘要

Long-term observations and studies have found that the occurrence and development of lung adenocarcinoma (LUAD) is associated with certain metabolic changes and that metabolic disorders are directly related to carcinogenic gene mutations. We attempted to establish a prognostic model for LUAD based on the expression profiles of metabolic genes.We analyzed the gene expression profiles of patients with LUAD obtained from The Cancer Genome Atlas (TCGA). Univariate Cox regression was used to assess the correlation between each metabolic gene and survival. The survival-related metabolic genes were fit into the least absolute shrinkage and selection operator (LASSO) to establish a prognostic model for LUAD. After 100,000 times of calculations and model construction, we successfully established a prognostic model consisting of 16 genes that can classify patients with LUAD into high-risk and low-risk groups. Further, the protein-protein interaction (PPI) network was built to determine the hub gene from16 metabolic genes. Finally, the top one hub gene was validated by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in our 50 paired LUAD and adjacent tissues, and the prognostic performance of 16 metabolic genes was validated in GEO LUAD cohorts.Univariate Cox regression analysis and LASSO regression analysis results showed that the prognostic model established based on 16 metabolic genes could differentiate patients with LUAD with significantly different overall survival (OS) and that the prognosis of the high-risk group was worse than that of the low-risk group. In addition, the model can independently predict the OS of patients in both the training cohort and the validation cohort (training cohort: HR =2.44, 95% CI: 1.58-3.74, P<0.05; validation cohort: HR =2.15, 95% CI: 2.52-2.70, P<0.05). The decision curve analysis further showed that the combination use of the prognostic model and clinical features could better predict the survival of patients and benefit patients. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed several basic signaling pathways and biological processes of metabolic genes in LUAD. Combined with the clinical features and metabolic gene characteristics of patients with LUAD, we also constructed a survival nomogram with a C-index of 0.701 to predict the survival probability of patients. The calibration curve confirmed that the nomogram predications were consistent with the actual observation results. The top one hub gene was TYMS, which was determined by PPI. TYMS levels in LUAD were detected by RT-qPCR and the expression of TYMS was significantly up-regulated in the LUAD tissue of all 50 pairs (t=11.079, P<0.0001). Simultaneously, the correct of the prognostic model was validated, based on the data in GSE37745.We constructed and validated a new prognostic model based on metabolic genes. This model could provide guidance for the personalized treatment of patients and improve the accuracy of individualized prognoses for patients with LUAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
科研通AI6.1应助lekins采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
8秒前
15秒前
ok关闭了ok文献求助
17秒前
21秒前
学术熊完成签到,获得积分20
22秒前
学术熊发布了新的文献求助10
25秒前
善学以致用应助jdjf采纳,获得10
33秒前
风中沛柔完成签到,获得积分10
35秒前
优秀冰真完成签到,获得积分10
39秒前
43秒前
Ray完成签到,获得积分10
44秒前
jdjf发布了新的文献求助10
47秒前
jdjf完成签到,获得积分10
54秒前
enen完成签到,获得积分20
1分钟前
小状元完成签到 ,获得积分10
1分钟前
1分钟前
吊炸天完成签到 ,获得积分10
1分钟前
阿斯顿马丁完成签到,获得积分10
1分钟前
1分钟前
橘子发布了新的文献求助10
1分钟前
西风惊绿完成签到,获得积分10
1分钟前
zkk完成签到 ,获得积分10
1分钟前
ok发布了新的文献求助10
2分钟前
李健应助Kevin采纳,获得10
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
Ava应助科研通管家采纳,获得10
2分钟前
壮观复天发布了新的文献求助10
2分钟前
2分钟前
冀东发布了新的文献求助10
2分钟前
ZS-完成签到 ,获得积分10
2分钟前
2分钟前
啵子发布了新的文献求助10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780136
求助须知:如何正确求助?哪些是违规求助? 5652435
关于积分的说明 15452791
捐赠科研通 4910922
什么是DOI,文献DOI怎么找? 2643112
邀请新用户注册赠送积分活动 1590741
关于科研通互助平台的介绍 1545245