Using BI-RADS Stratifications as Auxiliary Information for Breast Masses Classification in Ultrasound Images

计算机科学 人工智能 双雷达 乳腺超声检查 乳房成像 卷积神经网络 深度学习 支持向量机 模式识别(心理学) 放射科 乳腺摄影术 医学 人工神经网络 灵敏度(控制系统) 上下文图像分类 接收机工作特性 加权 乳腺癌 机器学习 图像(数学) 内科学 工程类 癌症 电子工程
作者
Jie Xing,Chao Chen,Qinyang Lu,Xun Cai,Aijun Yu,Yi Xu,Xiaoling Xia,Yue Sun,Jing Xiao,Lingyun Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 2058-2070 被引量:39
标识
DOI:10.1109/jbhi.2020.3034804
摘要

Breast Ultrasound (BUS) imaging has been recognized as an essential imaging modality for breast masses classification in China. Current deep learning (DL) based solutions for BUS classification seek to feed ultrasound (US) images into deep convolutional neural networks (CNNs), to learn a hierarchical combination of features for discriminating malignant and benign masses. One existing problem in current DL-based BUS classification was the lack of spatial and channel-wise features weighting, which inevitably allow interference from redundant features and low sensitivity. In this study, we aim to incorporate the instructive information provided by breast imaging reporting and data system (BI-RADS) within DL-based classification. A novel DL-based BI-RADS Vector-Attention Network (BVA Net) that trains with both texture information and decoded information from BI-RADS stratifications was proposed for the task. Three baseline models, pre-trained DenseNet-121, ResNet-50 and Residual-Attention Network (RA Net) were included for comparison. Experiments were conducted on a large scale private main dataset and two public datasets, UDIAT and BUSI. On the main dataset, BVA Net outperformed other models, in terms of AUC (area under the receiver operating curve, 0.908), ACC (accuracy, 0.865), sensitivity (0.812) and precision (0.795). BVA Net also achieved the high AUC (0.87 and 0.882) and ACC (0.859 and 0.843), on UDIAT and BUSI. Moreover, we proposed a method that integrates both BVA Net binary classification and BI-RADS stratification estimation, called integrated classification. The introduction of integrated classification helped improving the overall sensitivity while maintaining a high specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐板栗发布了新的文献求助10
2秒前
Pan发布了新的文献求助50
3秒前
1203发布了新的文献求助10
4秒前
领导范儿应助十六采纳,获得10
5秒前
哈哈哈曲奇完成签到,获得积分10
7秒前
Ninini发布了新的文献求助10
9秒前
11秒前
11秒前
完美世界应助懒羊羊采纳,获得10
12秒前
12秒前
14秒前
orange-study发布了新的文献求助30
14秒前
14秒前
陶醉的匕完成签到,获得积分10
14秒前
15秒前
bfhlf发布了新的文献求助10
15秒前
陶醉的匕发布了新的文献求助10
18秒前
方方99发布了新的文献求助10
19秒前
20秒前
21秒前
22秒前
duanhuiyuan应助lxz采纳,获得20
22秒前
Jasper应助典雅的如南采纳,获得10
23秒前
jmx234完成签到 ,获得积分10
23秒前
24秒前
25秒前
110发布了新的文献求助10
26秒前
小卡发布了新的文献求助10
26秒前
26秒前
柯一一应助多补钙采纳,获得10
27秒前
向言之发布了新的文献求助10
27秒前
强doig完成签到,获得积分10
28秒前
29秒前
YoungLee发布了新的文献求助10
30秒前
研究小白发布了新的文献求助10
31秒前
SciGPT应助1112采纳,获得10
34秒前
Double完成签到,获得积分20
34秒前
十六发布了新的文献求助10
34秒前
Hello应助Wang采纳,获得10
34秒前
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416752
求助须知:如何正确求助?哪些是违规求助? 3018587
关于积分的说明 8884468
捐赠科研通 2705811
什么是DOI,文献DOI怎么找? 1483954
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681049