锂(药物)
环境科学
电池(电)
重新使用
中国
废物管理
工程类
功率(物理)
政治学
量子力学
医学
物理
内分泌学
法学
作者
Tianming Gao,Gaoshang Wang,Tianming Gao,Bojie Wen,Tao Dai
标识
DOI:10.1016/j.scitotenv.2020.142835
摘要
China is expected to realise the complete electrification of traditional internal combustion engine vehicles (ICEVs) by 2050. The rapid development of electric vehicles (EVs) has led to the continuous growth of traction lithium-ion battery (LIB) demand, leading to an increase in demand for specific lithium materials. Therefore, end-of-life (EoL) LIB recycling will largely determine the future lithium availability in China. However, the contribution of recovered lithium to lithium availability is unclear, as the possibility of recovering lithium for reuse in traction LIBs manufacturing is uncertain. To analyse the influence of recovered lithium quality on future lithium availability, we evaluated the potential impact of EoL LIB recycling on lithium demand in China. The results indicated that if new LIB manufacturing cannot use the recovered lithium; the secondary resources would soon exceed the needs of the basic demand (BD) field. In the optimistic scenario, when a LiS battery is used, the oversupply could reach 2.33 Mt by 2050 with a recovery rate of 80%, which is equivalent to 44.05% of China's current lithium reserves of 5.29 Mt. Additionally, when the NCM-G battery is used, the total lithium demand would reach approximately 5.67 Mt in 2031, exceeding China's current lithium reserves. In contrast, if the recovered lithium could be reused in new LIB manufacturing, regardless of the type of LIBs used, the recovered lithium would meet approximately 60% (pessimistic scenario), 53% (neutral scenario), and 49% (optimistic scenario) of the lithium demand for LIBs produced with a recovery rate of 80% by 2050. Consequently, the quality of recovered lithium is very important for its reuse, and it is necessary to develop closed-loop recycling with economic benefits vigorously by improving the quality of recovered lithium. Moreover, much work should be done in recycling infrastructure and industrial policies to promote EoL battery recycling.
科研通智能强力驱动
Strongly Powered by AbleSci AI