Contribution of total dry matter and harvest index to maize grain yield—A multisource data analysis

干物质 粮食产量 产量(工程) 农学 栽培 动物科学 生物 物理 热力学
作者
Wanmao Liu,Peng Hou,Guangzhou Liu,Yunshan Yang,Xiaoxia Guo,Bo Ming,Ruizhi Xie,Keru Wang,Yuee Liu,Shaokun Li
出处
期刊:Food and Energy Security [Wiley]
卷期号:9 (4) 被引量:79
标识
DOI:10.1002/fes3.256
摘要

Abstract Understanding the contribution of aboveground dry matter (DM) production and harvest index (HI) to maize grain yield is essential to further improve grain yield to ensure future food growing requirements. In this study, we collected 548 sets of data of DM, HI, and grain yield from a multisite (40 sites) and multiyear (2009–2016) experiment conducted in major maize‐growing regions across China and 615 sets of data from 40 published papers distributed from 1988 to 2018 to assess the performance of DM, HI, and their contributions to grain yield. It was found that the average contribution rate of DM was 73.71%, which was much higher than those of HI (26.28%) across China. For the five different modern hybrids, the contribution rates of DM to grain yield (ranged from 71.36% to 89.10%) were also significantly higher than those of HI (ranged from 10.79% to 28.64%) on a large spatial scale. The significant differences in grain yields between cultivars were mainly due to the differences in HI. Among the four maize‐growing regions, the contribution rates of DM in both NW (57.34%) and NM (64.46%) were higher than those of HI (42.66% and 35.54%, respectively). In contrast, the contribution rates of HI in HM (52.67%) and SW (50.92%) were slightly higher than those of DM (47.33% and 49.08%, respectively). The interregional differences in grain yield were mainly attributed to the differences in DM between regions. Additionally, combining the data of this study and data collected from previous studies, we found that the increase in maize grain yield under lower yield levels (<15 Mg/ha) was mainly attributed to the increase in both DM and HI, while that under higher yield levels (>15 Mg/ha) was mainly dependent on the increase in DM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分10
2秒前
亦屿森完成签到,获得积分10
2秒前
3秒前
ywb发布了新的文献求助10
3秒前
无所屌谓发布了新的文献求助10
3秒前
3秒前
123完成签到,获得积分10
4秒前
天天快乐应助珍狗采纳,获得10
5秒前
SamXia完成签到,获得积分10
5秒前
老阳发布了新的文献求助10
7秒前
7秒前
7秒前
kk完成签到,获得积分10
7秒前
8秒前
8秒前
丘比特应助天真怜晴采纳,获得10
9秒前
务实的凝天完成签到,获得积分10
10秒前
毅力鸟完成签到,获得积分10
11秒前
Ava应助Paoaaa采纳,获得10
11秒前
12秒前
12秒前
科研通AI5应助无所屌谓采纳,获得10
12秒前
ghn123456789完成签到,获得积分10
13秒前
Roy酱完成签到,获得积分10
13秒前
13秒前
NexusExplorer应助啾啾采纳,获得10
14秒前
栗子完成签到,获得积分10
14秒前
19854173750发布了新的文献求助10
16秒前
wangle_17应助QIQI采纳,获得10
16秒前
16秒前
18秒前
小鲨鱼完成签到,获得积分10
19秒前
谦让烤鸡发布了新的文献求助10
19秒前
19秒前
ht2025发布了新的文献求助10
20秒前
20秒前
21秒前
石开222完成签到,获得积分10
22秒前
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738003
求助须知:如何正确求助?哪些是违规求助? 3281524
关于积分的说明 10025807
捐赠科研通 2998287
什么是DOI,文献DOI怎么找? 1645171
邀请新用户注册赠送积分活动 782646
科研通“疑难数据库(出版商)”最低求助积分说明 749882