Backdoor Learning: A Survey

后门 计算机科学 过程(计算) 对抗制 计算机安全 人工智能 水准点(测量) 机器学习 地理 大地测量学 操作系统
作者
Yiming Li,Yong Jiang,Zhifeng Li,Shu‐Tao Xia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 5-22 被引量:367
标识
DOI:10.1109/tnnls.2022.3182979
摘要

Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so that the attacked models perform well on benign samples, whereas their predictions will be maliciously changed if the hidden backdoor is activated by attacker-specified triggers. This threat could happen when the training process is not fully controlled, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, there is still no comprehensive and timely review of it. In this article, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and relevant fields (i.e., adversarial attacks and data poisoning), and summarize widely adopted benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works. A curated list of backdoor-related resources is also available at https://github.com/THUYimingLi/backdoor-learning-resources .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的半梦完成签到,获得积分10
刚刚
阿敬发布了新的文献求助10
刚刚
ZM发布了新的文献求助10
1秒前
nainai完成签到,获得积分20
1秒前
hy完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
SInyi发布了新的文献求助10
3秒前
奋斗夏烟发布了新的文献求助10
4秒前
魏魏发布了新的文献求助10
4秒前
酷波er应助Zoe采纳,获得10
4秒前
傲震发布了新的文献求助10
5秒前
6秒前
tytyty完成签到,获得积分10
6秒前
活泼秋玲发布了新的文献求助10
6秒前
阳光姝发布了新的文献求助10
6秒前
6秒前
6秒前
黑森林发布了新的文献求助10
7秒前
7秒前
7秒前
深情安青应助小风吹着采纳,获得10
8秒前
张亚娟完成签到,获得积分10
8秒前
在水一方应助slx采纳,获得10
8秒前
ZM完成签到,获得积分10
8秒前
8秒前
9秒前
11秒前
11秒前
田様应助小米粥采纳,获得10
11秒前
livialiu发布了新的文献求助10
12秒前
Jasper应助高高采纳,获得10
13秒前
13秒前
13秒前
123发布了新的文献求助10
13秒前
k_1发布了新的文献求助10
13秒前
乐乐应助luyan采纳,获得10
14秒前
14秒前
FashionBoy应助易只羊采纳,获得30
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577090
求助须知:如何正确求助?哪些是违规求助? 4662349
关于积分的说明 14741219
捐赠科研通 4602974
什么是DOI,文献DOI怎么找? 2526066
邀请新用户注册赠送积分活动 1495974
关于科研通互助平台的介绍 1465478