Backdoor Learning: A Survey

后门 计算机科学 过程(计算) 对抗制 计算机安全 人工智能 水准点(测量) 机器学习 地理 大地测量学 操作系统
作者
Yiming Li,Yong Jiang,Zhifeng Li,Shu‐Tao Xia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 5-22 被引量:367
标识
DOI:10.1109/tnnls.2022.3182979
摘要

Backdoor attack intends to embed hidden backdoors into deep neural networks (DNNs), so that the attacked models perform well on benign samples, whereas their predictions will be maliciously changed if the hidden backdoor is activated by attacker-specified triggers. This threat could happen when the training process is not fully controlled, such as training on third-party datasets or adopting third-party models, which poses a new and realistic threat. Although backdoor learning is an emerging and rapidly growing research area, there is still no comprehensive and timely review of it. In this article, we present the first comprehensive survey of this realm. We summarize and categorize existing backdoor attacks and defenses based on their characteristics, and provide a unified framework for analyzing poisoning-based backdoor attacks. Besides, we also analyze the relation between backdoor attacks and relevant fields (i.e., adversarial attacks and data poisoning), and summarize widely adopted benchmark datasets. Finally, we briefly outline certain future research directions relying upon reviewed works. A curated list of backdoor-related resources is also available at https://github.com/THUYimingLi/backdoor-learning-resources .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NicotineZen发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
seven发布了新的文献求助10
1秒前
FashionBoy应助ZIS采纳,获得10
1秒前
2秒前
Hale完成签到,获得积分0
2秒前
小鲨鱼发布了新的文献求助10
2秒前
SABUBU完成签到,获得积分10
4秒前
打打应助Aurora采纳,获得10
4秒前
4秒前
豆豆小baby发布了新的文献求助10
5秒前
孙不缺完成签到,获得积分10
5秒前
kyx发布了新的文献求助20
6秒前
6秒前
科研通AI6应助Cting采纳,获得10
7秒前
7秒前
7秒前
8秒前
王大力发布了新的文献求助10
9秒前
宁宁要去看文献了完成签到,获得积分10
9秒前
丘比特应助拾柒采纳,获得10
9秒前
9秒前
Awei发布了新的文献求助10
10秒前
小二郎应助wy采纳,获得10
10秒前
李爱国应助YY采纳,获得10
10秒前
星辰大海应助舒服的士萧采纳,获得10
10秒前
ning完成签到 ,获得积分10
10秒前
无花果应助花飞飞凡采纳,获得10
10秒前
久燊完成签到,获得积分20
11秒前
13秒前
tengfei完成签到,获得积分10
13秒前
13秒前
DDDD发布了新的文献求助10
15秒前
陆程文完成签到,获得积分10
15秒前
15秒前
霞俊杰完成签到,获得积分20
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836