Privacy-Preserved Data Sharing Towards Multiple Parties in Industrial IoTs

计算机科学 数据共享 上传 付款 差别隐私 信息隐私 过程(计算) 继电器 计算机安全 数据科学 数据挖掘 万维网 医学 替代医学 病理 功率(物理) 物理 量子力学 操作系统
作者
Xu Zheng,Zhipeng Cai
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:38 (5): 968-979 被引量:364
标识
DOI:10.1109/jsac.2020.2980802
摘要

The effective physical data sharing has been facilitating the functionality of Industrial IoTs, which is believed to be one primary basis for Industry 4.0. These physical data, while providing pivotal information for multiple components of a production system, also bring in severe privacy issues for both workers and manufacturers, thus aggravating the challenges for data sharing. Current designs tend to simplify the behaviors of participants for better theoretical analysis, and they cannot properly handle the challenges in IIoTs where the behaviors are more complicated and correlated. Therefore, this paper proposes a privacy-preserved data sharing framework for IIoTs, where multiple competing data consumers exist in different stages of the system. The framework allows data contributors to share their contents upon requests. The uploaded contents will be perturbed to preserve the sensitive status of contributors. The differential privacy is adopted in the perturbation to guarantee the privacy preservation. Then the data collector will process and relay contents with subsequent data consumers. This data collector will gain both its own data utility and extra profits in data relay. Two algorithms are proposed for data sharing in different scenarios, based on whether the service provider will further process the contents to retain its exclusive utility. This work also provides for both algorithms a comprehensive consideration on privacy, data utility, bandwidth efficiency, payment, and rationality for data sharing. Finally, the evaluation on real-world datasets demonstrates the effectiveness of proposed methods, together with clues for data sharing towards Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助碧蓝板栗采纳,获得20
2秒前
田様应助跋扈采纳,获得10
4秒前
5秒前
6秒前
若水应助传统的鹏涛采纳,获得10
7秒前
慕青应助ardejiang采纳,获得10
8秒前
10秒前
10秒前
壮观秋玲发布了新的文献求助10
11秒前
CodeCraft应助俞木逢朝采纳,获得10
13秒前
锐哥发布了新的文献求助30
13秒前
NexusExplorer应助wang采纳,获得10
15秒前
木棉发布了新的文献求助10
15秒前
orixero应助莫里耶采纳,获得10
15秒前
跋扈发布了新的文献求助10
16秒前
16秒前
Lucas应助专注的青荷采纳,获得10
16秒前
21秒前
轻舟发布了新的文献求助10
23秒前
botanist完成签到 ,获得积分10
23秒前
小蘑菇应助敏er好学采纳,获得10
24秒前
26秒前
JACS发布了新的文献求助10
28秒前
陈隆完成签到,获得积分10
28秒前
ARESCI完成签到,获得积分10
29秒前
完美世界应助zhangjw2016采纳,获得10
29秒前
若水应助传统的鹏涛采纳,获得10
30秒前
32秒前
32秒前
35秒前
oaix完成签到,获得积分10
35秒前
36秒前
苏蛋蛋i发布了新的文献求助10
36秒前
37秒前
37秒前
科研通AI2S应助crazykite采纳,获得10
37秒前
敏er好学发布了新的文献求助10
37秒前
可爱的函函应助锐哥采纳,获得10
38秒前
39秒前
那一片海完成签到,获得积分10
39秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596