Machine learning of biomarkers and clinical observation to predict eosinophilic chronic rhinosinusitis: a pilot study

医学 逻辑回归 嗜酸性粒细胞增多症 嗜酸性粒细胞 接收机工作特性 置信区间 内科学 单变量分析 鼻息肉 曲线下面积 嗜酸性粒细胞趋化因子 胃肠病学 多元分析 哮喘
作者
Ryan Thorwarth,Derek W. Scott,Devyani Lal,Michael J. Marino
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
卷期号:11 (1): 8-15 被引量:18
标识
DOI:10.1002/alr.22632
摘要

Background Subtyping chronic rhinosinusitis (CRS) by tissue eosinophilia has prognostic and therapeutic implications, and is difficult to predict using peripheral eosinophil counts or polyp status alone. The objective of this study was to test machine learning for prediction of eosinophilic CRS (eCRS). Methods Input variables were defined as peripheral eosinophil count, urinary leukotriene E4 (uLTE4) level, and polyp status. The output was diagnosis of eCRS, defined as tissue eosinophil count >10 per high‐power field. Patients undergoing surgery for CRS were retrospectively reviewed for complete datasets. Univariate analysis was performed for each input as a predictor of eCRS. Logistic regression and artificial neural network (ANN) machine learning models were developed using random and surgeon‐specific training/test datasets. Results A total of 80 patients met inclusion criteria. In univariate analysis, area under the receiver operator characteristic curve (AUC) for peripheral eosinophil count and uLTE4 were 0.738 (95% confidence interval [CI], 0.616 to 0.840) and 0.728 (95% CI, 0.605 to 0.822), respectively. Presence of polyps was 94.1% sensitive, but 51.7% specific. Logistic regression models using random and surgeon specific datasets resulted in AUC of 0.882 (95% CI, 0.665 to 0.970) and 0.945 (95% CI, 0.755 to 0.995), respectively. ANN models resulted in AUC of 0.918 (95% CI, 0.756 to 0.975) and 0.956 (95% CI, 0.828 to 0.999) using random and surgeon‐specific datasets, respectively. Model comparison of logistic regression and ANN was not statistically different. All machine learning models had AUC greater than univariate analyses (all p < 0.003). Conclusion Machine learning of 3 clinical inputs has the potential to predict eCRS with high sensitivity and specificity in this patient population. Prospective investigation using larger and more diverse populations is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
牛牛眉目发布了新的文献求助10
1秒前
little完成签到,获得积分10
1秒前
顾矜应助kiki采纳,获得10
1秒前
szh123发布了新的文献求助10
2秒前
乾乾发布了新的文献求助10
2秒前
3秒前
3秒前
希望天下0贩的0应助chen采纳,获得10
3秒前
星空浩宇发布了新的文献求助10
3秒前
李伟峰发布了新的文献求助10
3秒前
长命百岁完成签到 ,获得积分10
4秒前
Owen应助midokaori采纳,获得10
4秒前
5秒前
Owen应助lsn采纳,获得10
5秒前
snon发布了新的文献求助10
6秒前
大梦发布了新的文献求助10
7秒前
Ava应助淡定的不言采纳,获得10
7秒前
卡卡完成签到,获得积分10
7秒前
标致醉波完成签到,获得积分10
7秒前
8秒前
sususu发布了新的文献求助10
8秒前
科研小弟完成签到,获得积分10
9秒前
hxm发布了新的文献求助10
9秒前
11秒前
爆米花应助耍酷依玉采纳,获得10
12秒前
半糖发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
陈醋塔塔完成签到,获得积分10
13秒前
14秒前
清辞关注了科研通微信公众号
14秒前
现代的访曼应助xinyuY采纳,获得20
14秒前
LEMONS应助zkwgly采纳,获得10
15秒前
希望天下0贩的0应助zkwgly采纳,获得10
15秒前
15秒前
大梦完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956244
求助须知:如何正确求助?哪些是违规求助? 3502445
关于积分的说明 11107634
捐赠科研通 3233093
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802086